• Title/Summary/Keyword: NiS/CuS

Search Result 599, Processing Time 0.029 seconds

Thermodynamic Phase Equilibrium of Aqueous Fe-Ni-Cu-S-H2O Solution for Fe-Ni-Cu Alloy Plating (Fe-Ni-Cu 합금도금을 위한 Fe-Ni-Cu-S-H2O 용액의 열역학적 상의 안정도)

  • Baek, Yeol;Han, Sang-Seon;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.123.2-123.2
    • /
    • 2017
  • Fe-Ni-Cu 합금 전주를 위하여 황화물 용액에의 상의 열역학적 안정도를 작성하고 전주 조건을 선정하였다. $Fe-Ni-Cu-S-H_2O$ 용액의 열역학적 상의 안정도를 전산모사하기 위한 프로그램은 C#으로 작성하였다. JANAF 자료를 근거한 적정 전주 조건은 $130mA/cm^2$, $50{\sim}55^{\circ}C$, pH 2.4 이었다. XRF을 이용한 Fe-Ni-Cu의 합금 도막의 평균 조성은 Fe-42Ni-1Cu [wt.%] 이었다, 전류밀도가 낮아질수록 Ni과 Cu량은 증가하였다. 구리 농도가 증가하면 표면조도는 60 nm로 변화하였다.

  • PDF

Decomposition Reaction of Methanol over Ni-Cu/SiO$_2$Catalyst (Ni-Cu/SiO$_2$촉매 상에서의 메탄올 분해 반응)

  • 박지영;문승현;윤형기;박성룡;이상남;정승용
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.65-71
    • /
    • 1996
  • Decomposition reaction of methanol was conducted on Ni-Cu/SiO$_2$catalysts with several variables. Variables used in this study are S.V(Space Velocity), partial pressure of methanol, reaction temperature, and composition rate of Ni-Cu. The range of S.V is 10,000-30,000h$\^$-1/, the temperature range is 150-400$^{\circ}C$ and values of Cu/(Ni+Cu) are 0, 0.25, 0.5, 0.75, and 1. Over Ni/SiO$_2$, and Ni-Cu/SiO$_2$, the conversion rate of decomposition reaction of methanol arrived at 100% with increasing of temperature. At this time the selectivity of CO on Ni/SiO$_2$, was suddenly decreased, but on Ni-Cu/SiO$_2$, it was still sustained highly. The main products of reaction were CO and H$_2$, and by-products were CO$_2$ and CH$_4$mainly.

  • PDF

Effects of NiFeCo of NiFe Insertion Layers on the Giant Magnetoresistance Behavior of Ni/Cu Artificial Superlattice (Ni/Cu 인공초격자에서 NiFeCo 및 NiFe 계면 삽입층이 거대자기저항 거동에 미치는 영향)

  • 송용진;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.6
    • /
    • pp.963-967
    • /
    • 1995
  • Ultra thin layers of NiFeCo or NiFe were inserted at the interfaces of Ni and Cu to form a multilayer structure. In case of inserting a NiFe layer, the magnetoresistance was about 6%, the saturation magnetic field was 50 Oe and the hysteresis of R-H (resistance-magnetic field) was very small. In case of inserting a NiFeCo layer, the magnetoresistance increased to about 7% but the saturation magnetic field and hysteresis were also increased. The increase of the output under biased magnetic field was much larger in case of inserting a NiFe layer because of relatively smaller hysteresis in R-H behavior.

  • PDF

Portable Amperometric Glucose Detection based on NiS/CuS Nanorods Integrated with a Smartphone Device

  • Heyu Zhao;Kaige Qu;Haoyong Yin;Ling Wang;Yifan Zheng;Shumin Zhao;Shengji Wu
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.252-261
    • /
    • 2023
  • Glucose detection is particularly important for clinical diagnosis and personal prevention and control. Herein, the smartphone-based amperometric glucose sensors were constructed using the NiS/CuS nanorods (NRs) as sensing electrodes. The NiS/CuS NRs were prepared through a facile hydrothermal process accompanied by the subsequent vulcanization treatment. The morphological and structural properties of NiS/CuS NRs were characterized with SEM, EDS, XRD, and XPS. Electrochemical measurements including cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy display that NiS/CuS NRs can act as highly efficient electrocatalyst for glucose detection. The NiS/CuS NRs electrodes present a wide detection range of 1-8000 µM for glucose sensing with the sensitivity of 956.38 µA·mM-1·cm-2. The detection limit was 0.35 µM (S/N=3). When employed in smartphone-based glucose sensing device, they also display a high sensitivity of 738.09 µA·mM-1·cm-2 and low detection limit of 1.67 µM. Moreover, the smartphone-based glucose sensing device also presents favorable feasibility in determination of glucose in serum samples with the recoveries ranging between 99.5 and 105.8%. The results may provide a promising viewpoint to design other new portable glucose sensors.

Effect of the Cu Composition Ratio on the Phase Transformation in Low Ni Austenite Cast Iron, Fe-3%C-16%(Ni+Mn+Cu) (Fe-3%C-16%(Ni+Mn+Cu) 주철에서 상변태에 미치는 Cu 조성비의 영향)

  • Park, Gi-Deok;Heo, Hoe-Jun;Na, He-Sung;Kang, Chung-Yun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.419-425
    • /
    • 2012
  • The purpose of this research was to develop a low Ni austenitic cast iron through replacing Ni by Cu and Mn because they are cheaper than Ni. The effect of the Cu content (6-12 wt%) on the microstructure characteristics was investigated in Fe-3%C-16%(Ni+Cu+Mn) cast iron. Contrary to general effect of the Cu on cast iron, the result of the microstructure analysis indicated that bainite and cementite were formed in high Cu content (>8 wt%Cu). A crystallized Cu-solution (Cu-Mn) phase and MnS in the Cu-solution were formed. The quantity of those phases increased as the Cu content increased. Consequently, the high Cu content in the composition ratio (Ni+Cu+Mn=16%) caused the formation of Cu-Mn/MnS and those phases decreased the effect of Cu and Mn on austenite formation. For this reason, bainite and cementite were formed in high Cu content.

Magnetoresistance in Hybrid Type YBCO-NiO/NiFe/Cu/NiFe Film Structure

  • Lee, S.S;Rhee, J.R;Hwang, D.G;Rhie, K
    • Journal of Magnetics
    • /
    • v.6 no.3
    • /
    • pp.83-85
    • /
    • 2001
  • The magnetoresistance properties of NiO/NiFe/Cu/NiFe spin valve film deposited on MgO(100) substrate with YBa$_2$$Cu_3O_7$(YBCO) film were investigated at room temperature and at 77 K. The magnetoresistance (MR) curves of the hybrid superconductor-magnetoresistor film structure showed an exchange coupling field of 300 Oe and an inverse magnetoresistance ratio of -6.5%. The magnetization configurations of the two magnetic layers in the NiO spin valve were antiparallel due to an increment in the conduction electron flow to superconductor YBCO film. This sample showed an inverse MR ratio.

  • PDF

Quantitative Surface Analysis of Co-Ni and Au-Cu alloys by XPS and SIMS (XPS와 SIMS에 의한 Co-Ni과 Au-Cu 합금표면 정량분석 연구)

  • 김경중;문대원;이광우
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.106-114
    • /
    • 1992
  • Abstract-Quantitative surface analysis of Co-Ni and Au-Cu alloys by XPS and SIMS was studied. For Co-Ni alloy, quantitative XPS analysis could be done within 1-2% relative error with pure element standards without any correction. For Au-Cu, quantitative XPS analysis was not possible without any correction. But it could be done with standard alloys of various composition within 1-2% relative error. Without standard alloys, Au-Cu alloys could be analyzed by XPS within 10% relative error with pure element standards. For SIMS analysis of Co-Ni alloys, the relative secondary ion yields of Co+/Nit has linear relation with ratio of each composition so that quantitative SIMS analysis was possible for Co-Ni alloys. Preliminary results of XPS round robin test of VAMAS-SCA Japan Project are given.

  • PDF

Thermal Stability of Amorphous Ti-Cu-Ni-Sn Prepared by Mechanical Alloying

  • Oanha, N.T.H.;Choi, P.P.;Kim, J.S.;Kim, J.C.;Kwone, Y.S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.953-954
    • /
    • 2006
  • Ti-Cu-Ni-Sn quaternary amorphous alloys of $Ti_{50}Cu_{32}Ni_{15}Sn_3$, $Ti_{50}Cu_{25}Ni_{20}Sn_5$, and $Ti_{50}Cu_{23}Ni_{20}Sn_7$ composition were prepared by mechanical alloying in a planetary high-energy ball-mill (AGO-2). The amorphization of all three alloys was found to set in after milling at 300rpm speed for 2h. A complete amorphization was observed for $Ti_{50}Cu_{32}Ni_{15}Sn_3$ and $Ti_{50}Cu_{25}Ni_{20}Sn_5$ after 30h and 20h of milling, respectively. Differential scanning calorimetry analyses revealed that the thermal stability increased in the order of $Ti_{50}Cu_{32}Ni_{15}Sn_3$, $Ti_{50}Cu_{25}Ni_{20}Sn_5$, and $Ti_{50}Cu_{23}Ni_{20}Sn_7$.

  • PDF

MAGNETORESISTANCE OF NiFeCo/Cu/NiFeCo/FeMn MULTILAYERED THIN FILMS WITH LOW SATURATION FIELD

  • Bae, S.T.;Min, K.I.;Shin, K.H.;Kim, J.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.570-574
    • /
    • 1995
  • Magnetoresistance of NiFeCo/Cu/NiFeCo/FeMn uncoupled exchange biased sandwiches has been studied. The magnetoresistance change ratio, ${\Delta}R/R_{s}$ showed 4.1 % at a saturation field as low as 11 Oe in $Si/Ti(50\;{\AA})/NiFeCo(70\;{\AA})/Cu(23\;{\AA})/NiFeCo(70\;{\AA})/FeMn(150\;{\AA})/Cu(50\;{\AA})$ spin valve structure. In this system, the magnetoresistance was affected by interlayer material and thickness. When Ti and Cu were used as the interlayer material in this structure, maximum magnetoresistance change ratio were 0.32 % and 4.1 %, respectively. 6.1 % MR ratio was obtained in $Si/Ti(50\;{\AA})/NiFeCo(70\;{\AA})/Cu(15\;{\AA})/NiFeCo(70\;{\AA})/FeMn(150\;{\AA})/Cu(50\;{\AA})$ spin valve structure. The magnetoresistance change ratio decreased monotonically as the interlayer thickness increased. It was found that the exchange bias field exerted by FeMn layer to the adjacent NiFeCo layer was ~25 Oe, far smaller than that reported in NiFe/Cu/NiFe/FeMn spin valve structure(Dieny et. al., ~400 Oe). The relationship between the film texture and exchange anisotropy ha been examined for spin valve structures with Ti, Cu, or non-buffer layer.

  • PDF