DOI QR코드

DOI QR Code

Identification of 1,3,6,8-Tetrahydroxynaphthalene Synthase (ThnA) from Nocardia sp. CS682

  • Purna Bahadur Poudel (Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University) ;
  • Rubin Thapa Magar (Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University) ;
  • Adzemye Fovennso Bridget (Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University) ;
  • Jae Kyung Sohng (Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University)
  • Received : 2023.03.07
  • Accepted : 2023.04.25
  • Published : 2023.07.28

Abstract

Type III polyketide synthase (PKS) found in bacteria is known as 1,3,6,8-tetrahydroxynaphthalene synthase (THNS). Microbial type III PKSs synthesize various compounds that possess crucial biological functions and significant pharmaceutical activities. Based on our sequence analysis, we have identified a putative type III polyketide synthase from Nocardia sp. CS682 was named as ThnA. The role of ThnA, in Nocardia sp. CS682 during the biosynthesis of 1,3,6,8 tetrahydroxynaphthalene(THN), which is the key intermediate of 1-(α-L-(2-O-methyl)-6-deoxymannopyranosyloxy)-3,6,8-trimethoxynaphthalene (IBR-3) was characterized. ThnA utilized five molecules of malonyl-CoA as a starter substrate to generate the polyketide 1,3,6,8-tetrahydroxynaphthalene, which could spontaneously be oxidized to the red flaviolin compound 2,5,7-trihydroxy-1,4-naphthoquinone. The amino acid sequence alignment of ThnA revealed similarities with a previously identified type III PKS and identified Cys138, Phe188, His270, and Asn303 as four highly conserved active site amino acid residues, as found in other known polyketide synthases. In this study, we report the heterologous expression of the type III polyketide synthase thnA in S. lividans TK24 and the identification of THN production in a mutant strain. We also compared the transcription level of thnA in S. lividans TK24 and S. lividans pIBR25-thnA and found that thnA was only transcribed in the mutant.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (NRF-2021R1A2C2004775).

References

  1. Austin MB, Noel JP. 2003. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20: 79-110. https://doi.org/10.1039/b100917f
  2. Walsh CT. 2004. Polyketide and nonribosomal peptide antibiotics. Science 303: 1805-1810. https://doi.org/10.1126/science.1094318
  3. Wei Y, Zhang L, Zhou Z, Yan X. 2018. Diversity of gene clusters for polyketide and nonribosomal peptide biosynthesis revealed by metagenomic analysis of the yellow sea sediment. Front. Microbiol. 9: 295.
  4. Newman DJ, Cragg GM. 2007. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 70: 461-477. https://doi.org/10.1021/np068054v
  5. Hill AM. 2006. The biosynthesis, molecular genetics and enzymology of the polyketide-derived metabolites. Nat. Prod. Rep. 23: 256-320. https://doi.org/10.1039/B301028G
  6. Ghimire GP, Oh TJ, Liou K, Sohng JK. 2008. Identification of a cryptic type III polyketide synthase (1,3,6,8-tetrahydroxynaphthalene synthase) from Streptomyces Peucetius ATCC 27952. Mol. Cells 26: 362-367. https://doi.org/10.1016/S1016-8478(23)14009-X
  7. Moore BS, Hopke JN. 2001. Discovery of a new bacterial polyketide biosynthetic pathway. ChemBioChem. 2: 35-38. https://doi.org/10.1002/1439-7633(20010105)2:1<35::AID-CBIC35>3.0.CO;2-1
  8. Chooi YH, Tang Y. 2012. Navigating the fungal polyketide chemical space: From genes to molecules. J. Org. Chem. 77: 9933-9953. https://doi.org/10.1021/jo301592k
  9. Poudel PB, Dhakal D, Magar RT, Sohng JK. 2022. Microbial biosynthesis of chrysazin derivatives in recombinant Escherichia coli and their biological activities. Molecules 27: 5554.
  10. Kandel R, Jang SR, Shrestha S, Ghimire U, Shrestha BK, Park CH, et al. 2021. A Bimetallic load-bearing bioceramics of TiO2 @ ZrO2 integrated polycaprolactone fibrous tissue construct exhibits anti bactericidal effect and induces osteogenesis in MC3T3-E1 cells. Mater. Sci. Eng. 131: 112501.
  11. Shen B. 2003. Polyketide biosynthesis beyond the Type I, II and III polyketide synthase paradigms. Curr. Opin. Chem. Biol. 7: 285-295. https://doi.org/10.1016/S1367-5931(03)00020-6
  12. Fischbach MA, Walsh CT. 2006. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic machinery, and mechanisms. Chem. Rev. 106: 3468-3496. https://doi.org/10.1021/cr0503097
  13. Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A. 2007. Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat. Prod. Rep. 24: 162-190. https://doi.org/10.1039/B507395M
  14. Larsen JS, Pearson LA, Neilan BA. 2021. Genome mining and evolutionary analysis reveal diverse type III polyketide synthase pathways in cyanobacteria. Genome Biol. Evol. 13: evab056.
  15. Mishra R, Dhakal D, Han JM, Lim HN, Jung HJ, Yamaguchi T, et al. 2019. Production of a novel tetrahydroxynaphthalene (THN) derivative from Nocardia sp. CS682 by metabolic engineering and its bioactivities. Molecules 24: 244.
  16. Ueda K, Kimtf K, Beppu T, Horinouchi S. 1995. Overexpression of a gene cluster encoding a chalcone synthase-like protein confers redbrown pigment production in Streptomyces griseus. J. Antibiot. (Tokyo) 48: 638-646. https://doi.org/10.7164/antibiotics.48.638
  17. Funa N, Ohnishi Y, Ebizuka Y, Horinouchi S. 2002. Properties and substrate specificity of RppA, a chalcone synthase-related polyketide synthase in Streptomyces griseus. J. Biol. Chem. 277: 4628-4635. https://doi.org/10.1074/jbc.M110357200
  18. Cortes J, Velasco J, Foster G, Blackaby AP, Rudd BAM, Wilkinson B. 2002. Identification and cloning of a type III polyketide synthase required for diffusible pigment biosynthesis in Saccharopolyspora erythraea. Mol. Microbiol. 44: 1213-1224. https://doi.org/10.1046/j.1365-2958.2002.02975.x
  19. Zeng, J, Decker R, Zhan J. 2012. Biochemical characterization of a type III polyketide biosynthetic gene cluster from Streptomyces toxytricini. Appl. Biochem. Biotechnol. 166: 1020-1033. https://doi.org/10.1007/s12010-011-9490-x
  20. Gross F, Luniak N, Perlova O, Gaitatzis N, Jenke-Kodama H, Gerth K, et al. 2006. Bacterial type III polyketide synthases: Phylogenetic analysis and potential for the production of novel secondary metabolites by heterologous expression in Pseudomonads. Arch. Microbiol. 185: 28-38. https://doi.org/10.1007/s00203-005-0059-3
  21. Dhakal D, Rayamajhi V, Nguyen HT, Poudel PB, Sohng JK. 2019. Complete genome sequence of Nocardia sp. strain CS682, a producer of antibacterial compound nargenicin A1. Microbiol. Resour. Announc. 8: 1-2.
  22. Poudel PB, Pandey RP, Dhakal D, Kim T, Nguyen TH, Jung HJ, et al. 2022. Functional characterization of a regiospecific sugar-O-methyltransferase from Nocardia. Appl. Environ. Microbiol. 88: e0075422.
  23. Dhakal D , Sohng JK.2015. Laboratory maintenance of Nocardia sp. Curr. Protoc. Microbiol. 39: 10-27. https://doi.org/10.1002/9780471729259.mc10f01s39
  24. Sthapit B, Oh TJ, Lamichhane R, Liou K, Lee HC, Kim CG, et al. 2004. Neocarzinostatin naphthoate synthase: an unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Lett. 566: 201-206. https://doi.org/10.1016/j.febslet.2004.04.033
  25. Malla S, Niraula NP, Liou K, Sohng JK. 2009. Enhancement of doxorubicin production by expression of structural sugar biosynthesis and glycosyltransferase genes in Streptomyces peucetius. J. Biosci. Bioeng. 108: 92-98. https://doi.org/10.1016/j.jbiosc.2009.03.002
  26. Malla S, Niraula NP, Liou K, Sohng JK. 2010. Self-resistance mechanism in Streptomyces peucetius: overexpression of drrA, drrB and drrC for doxorubicin enhancement. Microbiol. Res. 165: 259-267. https://doi.org/10.1016/j.micres.2009.04.002
  27. Gokula K, O'Leary SE, Russell WK, Russell DH, Lalgondar M, Begley TP, et al. 2013. Crystal structure of Mycobacterium Tuberculosis polyketide synthase 11 (PKS11) reveals intermediates in the synthesis of methyl-branched alkylpyrones. J. Biol. Chem. 288: 16484-16494. https://doi.org/10.1074/jbc.M113.468892
  28. Jez JM, Austin MB, Ferrer JL, Bowman ME, Schroder J, Noel JP. 2000. Structural control of polyketide formation in plant-specific polyketide synthases. Chem. Biol. 7: 919-930. https://doi.org/10.1016/S1074-5521(00)00041-7
  29. Fuan N, Ohnishi Y, Ebizuka Y, Horinouchi S. 2002. Alteration of reaction and substrate specificity of a bacterial type III polyketide synthase by site-directed mutagenesis. Biochem. J. 367: 781-789. https://doi.org/10.1042/bj20020953
  30. Jez JM, Ferrer JL, Bowman ME, Dixon RA, Noel JP. 2000. Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. Biochemistry 39: 890-902. https://doi.org/10.1021/bi991489f