Acknowledgement
The authors acknowledge the partial financial support provided by the National Research Foundation of Korea Grant, which is funded by the Korean Government (NRF-2019R1A6A1A03031807 and NRF-2021R1A2C1093814).
References
- Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. 2018. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9: 7204.
- Tay MZ, Poh CM, Renia L, MacAry PA, Ng LF. 2020. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20: 363-374. https://doi.org/10.1038/s41577-020-0311-8
- MacDonald TT, Monteleone G. 2005. Immunity, inflammation, and allergy in the gut. Science 307: 1920-1925. https://doi.org/10.1126/science.1106442
- Wellen KE, Hotamisligil GS. 2005. Inflammation, stress, and diabetes. J. Clin. Invest. 115: 1111-1119. https://doi.org/10.1172/JCI25102
- Libby P. 2006. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr. 83: 456S-460S. https://doi.org/10.1093/ajcn/83.2.456S
- Hirano T. 2021. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 33: 127-148. https://doi.org/10.1093/intimm/dxaa078
- Harizi H, Gualde N. 2006. Pivotal role of PGE2 and IL-10 in the cross-regulation of dendritic cell-derived inflammatory mediators. Cell. Mol. Immunol. 3: 271-277.
- Vinh LB, Jang HJ, Phong NV, Cho K, Park SS, Kang JS, et al. 2019. Isolation, structural elucidation, and insights into the anti-inflammatory effects of triterpene saponins from the leaves of Stauntonia hexaphylla. Bioog. Med. Chem. Lett. 29: 965-969. https://doi.org/10.1016/j.bmcl.2019.02.022
- Hung TM, Dang NH, Kim JC, Choi JS, Lee HK, Min B-S. 2009. Phenolic glycosides from Alangium salviifolium leaves with inhibitory activity on LPS-induced NO, PGE2, and TNF-α production. Bioog. Med. Chem. Lett. 19: 4389-4393. https://doi.org/10.1016/j.bmcl.2009.05.070
- Dung TTM, Lee J, Kim E, Yoo BC, Ha VT, Kim Y, et al. 2015. Anti-inflammatory activities of Gouania leptostachya methanol extract and its constituent resveratrol. Phytother. Res. 29: 381-392. https://doi.org/10.1002/ptr.5262
- An NV. 2010. Research on plant characteristics, chemical composition, antimicrobial and antifungal effects of Gouania leptostachya. Master thesis, Hanoi University of Pharmacy.
- Batmunkh T, Juan QH, Nga DT, Kyung KE, Ah KY, Wan SY, et al. 2007. Free radicals scavenging activity of Mongolian endemic and Vietnamese medicinal plants. Planta Med. 73: P_057.
- Yao C, Zhang SJ, Bai ZZ, Zhou T, LJ X. 2011. Two new benzopyran derivatives from Gouania leptostachya DC. var. tonkinensis Pitard. Chin. Chem. Lett. 22: 175-177. https://doi.org/10.1016/j.cclet.2010.09.028
- Hang NT, Bich Thu NT, Le Ba V, Van On T, Khoi NM, Do TH. 2022. Characterisation of four new triterpenoid saponins with nitric oxide inhibitory activity from aerial parts of Gouania leptostachya. Nat. Prod. Res. 36: 5999-6005. https://doi.org/10.1080/14786419.2022.2057971
- Burns D, Reynolds WF, Buchanan G, Reese PB, Enriquez RG. 2000. Assignment of 1H and 13C spectra and investigation of hindered side-chain rotation in lupeol derivatives. Magn. Reson. Chem. 38: 488-493. https://doi.org/10.1002/1097-458X(200007)38:7<488::AID-MRC704>3.0.CO;2-G
- Nguyen TTH, Lam KP, Huynh CTK, Nguyen PKP, Hansen PE. 2011. Chemical constituents from leaves of Sonneratia alba J. Smith SMITH (Sonneratiaceae). J. Sci. Technol. Dev. 14: 11-17. https://doi.org/10.32508/stdj.v14i4.2043
- Jou SJ, Chen CH, Guh JH, Lee CN, Lee SS. 2004. Flavonol glycosides and cytotoxic triterpenoids from Alphitonia philippinensis. J. Chin. Chem. Soc. 51: 827-834. https://doi.org/10.1002/jccs.200400124
- Lendl A, Werner I, Glasl S, Kletter C, Mucaji P, Presser A, et al. 2005. Phenolic and terpenoid compounds from Chione venosa (sw.) urban var. venosa (Bois Bande). Phytochemistry 66: 2381-2387. https://doi.org/10.1016/j.phytochem.2005.07.002
- Pyo MK, YunChoi HS, Kim YK. 2006. Isolation of n-Butyl-B-fructopyranoside rom Gastrodia elata Blume. Nat. Prod. Sci. 12: 101-103.
- Aderogba MA, Ndhlala AR, Rengasamy KR, Van Staden J. 2013. Antimicrobial and selected in vitro enzyme inhibitory effects of leaf extracts, flavonols and indole alkaloids isolated from Croton menyharthii. Molecules 18: 12633-12644. https://doi.org/10.3390/molecules181012633
- Cren-Olive C, Wieruszeski J-M, Maes E, Rolando C. 2002. Catechin and epicatechin deprotonation followed by 13C NMR. Tetrahedron. Lett. 43: 4545-4549. https://doi.org/10.1016/S0040-4039(02)00745-1
- Kim HY, Moon BH, Lee HJ, Choi DH. 2004. Flavonol glycosides from the leaves of Eucommia ulmoides O. with glycation inhibitory activity. J. Ethnopharmacol. 93: 227-230. https://doi.org/10.1016/j.jep.2004.03.047
- Wang Y, Xie X, Liu L, Zhang H, Ni F, Wen J, et al. 2021. Four new flavonol glycosides from the leaves of Ginkgo biloba. Nat. Prod. Res. 35: 2520-2525. https://doi.org/10.1080/14786419.2019.1684282
- Zhang P, Xu L, Qian K, Liu J, Zhang L, Lee K-H, et al. 2011. Efficient synthesis and biological evaluation of epiceanothic acid and related compounds. Bioog. Med. Chem. Lett. 21: 338-341. https://doi.org/10.1016/j.bmcl.2010.11.004
- Vinh LB, Nguyet NTM, Ye L, Dan G, Phong NV, Anh HLT, et al. 2020. Enhancement of an in vivo anti-inflammatory activity of oleanolic acid through glycosylation occurring naturally in Stauntonia hexaphylla. Molecules 25: 3699.
- Vinh LB, Phong NV, Ali I, Dan G, Koh YS, Anh HLT, et al. 2020. Identification of potential anti-inflammatory and melanoma cytotoxic compounds from Aegiceras corniculatum. Med. Chem. Res. 29: 2020-2027 https://doi.org/10.1007/s00044-020-02613-5
- Newman DJ. 2021. Natural product based antibody drug conjugates: Clinical status as of November 9, 2020. J. Nat. Prod. 84: 917-931. https://doi.org/10.1021/acs.jnatprod.1c00065
- Vinh LB, Jang HJ, Phong NV, Dan G, Cho KW, Kim YH, et al. 2019. Bioactive triterpene glycosides from the fruit of Stauntonia hexaphylla and insights into the molecular mechanism of its inflammatory effects. Bioorg. Med. Chem. Lett. 29: 2085-2089. https://doi.org/10.1016/j.bmcl.2019.07.010
- Vinh LB, Lee Y, Han YK, Kang JS, Park JU, Kim YR, et al. 2017. Two new dammarane-type triterpene saponins from Korean red ginseng and their anti-inflammatory effects. Bioorg. Med. Chem. Lett. 27: 5149-5153. https://doi.org/10.1016/j.bmcl.2017.10.058
- Rho T, Jeong HW, Hong YD, Yoon K, Cho JY, Yoon KD. 2020. Identification of a novel triterpene saponin from Panax ginseng seeds, pseudoginsenoside RT8, and its antiinflammatory activity. J. Ginseng Res. 44: 145-153. https://doi.org/10.1016/j.jgr.2018.11.001
- Cuong NX, Hoang L, Hanh TTH, Van Thanh N, Nam NH, Thung DC, et al. 2017. Cytotoxic triterpene diglycosides from the sea cucumber Stichopus horrens. Bioorg. Med. Chem. Lett. 27: 2939-2942. https://doi.org/10.1016/j.bmcl.2017.05.003
- Patlolla JM, Rao CV. 2015. Anti-inflammatory and anti-cancer properties of β-Escin, a triterpene Saponin. Curr. Pharmacol. Rep. 1: 170-178. https://doi.org/10.1007/s40495-015-0019-9
- Dong S, Yang X, Zhao L, Zhang F, Hou Z, Xue P. 2020. Antibacterial activity and mechanism of action saponins from Chenopodium quinoa Willd. husks against foodborne pathogenic bacteria. Ind. Crops Prod. 149: 112350.
- Mostafa A, Sudisha J, El-Sayed M, Ito S-i, Ikeda T, Yamauchi N, et al. 2013. Aginoside saponin, a potent antifungal compound, and secondary metabolite analyses from Allium nigrum L. Phytochem. Lett. 6: 274-280. https://doi.org/10.1016/j.phytol.2013.03.001
- Sur P, Chaudhuri T, Vedasiromoni J, Gomes A, Ganguly D. 2001. Antiinflammatory and antioxidant property of saponins of tea [Camellia sinensis (L) O. Kuntze] root extract. Phytother. Res. 15: 174-176. https://doi.org/10.1002/ptr.696
- Zhang H-X, Wang Z-Z, Du Z-Z. 2022. Sensory-guided isolation and identification of new sweet-tasting dammarane-type saponins from Jiaogulan (Gynostemma pentaphyllum) herbal tea. Food Chem. 388: 132981.
- Fu J, Wang Z, Huang L, Zheng S, Wang D, Chen S, et al. 2014. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi). Phytother. Res. 28: 1275-1283. https://doi.org/10.1002/ptr.5188
- Cao TQ, Phong NV, Kim JH, Gao D, Anh HLT, Ngo V-D, et al. 2021. Inhibitory effects of cucurbitane-type triterpenoids from Momordica charantia fruit on lipopolysaccharide-stimulated pro-Inflammatory cytokine production in bone marrow-derived dendritic cells. Molecules 26: 4444.
- Duyen NT, Vinh LB, Phong NV, Khoi NM, Long PQ, Hien TT, et al. 2022. Steroid glycosides isolated from Paris polyphylla var. chinensis aerial parts and paris saponin II induces G1/S-phase MCF-7 cell cycle arrest. Carbohydr. Res. 519: 108613.