DOI QR코드

DOI QR Code

A New Ceanothane-Type Triterpenoid Saponin Isolated from Gouania leptostachya DC. var. tonkinensis Pit. and Its Underlying Anti-Inflammatory Effects

  • Received : 2023.01.30
  • Accepted : 2023.04.12
  • Published : 2023.07.28

Abstract

Metabolites from medicinal plants continue to hold significant value in the exploration and advancement of novel pharmaceuticals. In the search for plants containing compounds with anti-inflammatory effects, we observed that the ethanol (EtOH) extract obtained from the aerial components of Gouania leptostachya DC. var. tonkinensis Pit. exhibited substantial suppression of nitric oxide (NO) in vitro. In a phytochemical study on an EtOH extract of G. leptostachya, 11 compounds were purified, including one unreported compound namely gouanioside A (1). Their chemical structures were unambiguously determined through the use of various spectroscopic techniques, such as 1 and 2D NMR, IR, and HR-ESI-MS, and by producing derivatives via chemical reactions. The EtOH extract, fractions, and a new compound exerted inflammatory effects by altering NO synthesis in murine RAW264.7 macrophage cells stimulated with lipopolysaccharide. The underlying inflammatory mechanism of the new compound 1 was also explored through various in vitro experiments. The results of this study indicate the potential usefulness of new compound 1 from G. leptostachya as a treatment for inflammatory diseases.

Keywords

Acknowledgement

The authors acknowledge the partial financial support provided by the National Research Foundation of Korea Grant, which is funded by the Korean Government (NRF-2019R1A6A1A03031807 and NRF-2021R1A2C1093814).

References

  1. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. 2018. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9: 7204.
  2. Tay MZ, Poh CM, Renia L, MacAry PA, Ng LF. 2020. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20: 363-374. https://doi.org/10.1038/s41577-020-0311-8
  3. MacDonald TT, Monteleone G. 2005. Immunity, inflammation, and allergy in the gut. Science 307: 1920-1925. https://doi.org/10.1126/science.1106442
  4. Wellen KE, Hotamisligil GS. 2005. Inflammation, stress, and diabetes. J. Clin. Invest. 115: 1111-1119. https://doi.org/10.1172/JCI25102
  5. Libby P. 2006. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr. 83: 456S-460S. https://doi.org/10.1093/ajcn/83.2.456S
  6. Hirano T. 2021. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 33: 127-148. https://doi.org/10.1093/intimm/dxaa078
  7. Harizi H, Gualde N. 2006. Pivotal role of PGE2 and IL-10 in the cross-regulation of dendritic cell-derived inflammatory mediators. Cell. Mol. Immunol. 3: 271-277.
  8. Vinh LB, Jang HJ, Phong NV, Cho K, Park SS, Kang JS, et al. 2019. Isolation, structural elucidation, and insights into the anti-inflammatory effects of triterpene saponins from the leaves of Stauntonia hexaphylla. Bioog. Med. Chem. Lett. 29: 965-969. https://doi.org/10.1016/j.bmcl.2019.02.022
  9. Hung TM, Dang NH, Kim JC, Choi JS, Lee HK, Min B-S. 2009. Phenolic glycosides from Alangium salviifolium leaves with inhibitory activity on LPS-induced NO, PGE2, and TNF-α production. Bioog. Med. Chem. Lett. 19: 4389-4393. https://doi.org/10.1016/j.bmcl.2009.05.070
  10. Dung TTM, Lee J, Kim E, Yoo BC, Ha VT, Kim Y, et al. 2015. Anti-inflammatory activities of Gouania leptostachya methanol extract and its constituent resveratrol. Phytother. Res. 29: 381-392. https://doi.org/10.1002/ptr.5262
  11. An NV. 2010. Research on plant characteristics, chemical composition, antimicrobial and antifungal effects of Gouania leptostachya. Master thesis, Hanoi University of Pharmacy.
  12. Batmunkh T, Juan QH, Nga DT, Kyung KE, Ah KY, Wan SY, et al. 2007. Free radicals scavenging activity of Mongolian endemic and Vietnamese medicinal plants. Planta Med. 73: P_057.
  13. Yao C, Zhang SJ, Bai ZZ, Zhou T, LJ X. 2011. Two new benzopyran derivatives from Gouania leptostachya DC. var. tonkinensis Pitard. Chin. Chem. Lett. 22: 175-177. https://doi.org/10.1016/j.cclet.2010.09.028
  14. Hang NT, Bich Thu NT, Le Ba V, Van On T, Khoi NM, Do TH. 2022. Characterisation of four new triterpenoid saponins with nitric oxide inhibitory activity from aerial parts of Gouania leptostachya. Nat. Prod. Res. 36: 5999-6005. https://doi.org/10.1080/14786419.2022.2057971
  15. Burns D, Reynolds WF, Buchanan G, Reese PB, Enriquez RG. 2000. Assignment of 1H and 13C spectra and investigation of hindered side-chain rotation in lupeol derivatives. Magn. Reson. Chem. 38: 488-493. https://doi.org/10.1002/1097-458X(200007)38:7<488::AID-MRC704>3.0.CO;2-G
  16. Nguyen TTH, Lam KP, Huynh CTK, Nguyen PKP, Hansen PE. 2011. Chemical constituents from leaves of Sonneratia alba J. Smith SMITH (Sonneratiaceae). J. Sci. Technol. Dev. 14: 11-17. https://doi.org/10.32508/stdj.v14i4.2043
  17. Jou SJ, Chen CH, Guh JH, Lee CN, Lee SS. 2004. Flavonol glycosides and cytotoxic triterpenoids from Alphitonia philippinensis. J. Chin. Chem. Soc. 51: 827-834. https://doi.org/10.1002/jccs.200400124
  18. Lendl A, Werner I, Glasl S, Kletter C, Mucaji P, Presser A, et al. 2005. Phenolic and terpenoid compounds from Chione venosa (sw.) urban var. venosa (Bois Bande). Phytochemistry 66: 2381-2387. https://doi.org/10.1016/j.phytochem.2005.07.002
  19. Pyo MK, YunChoi HS, Kim YK. 2006. Isolation of n-Butyl-B-fructopyranoside rom Gastrodia elata Blume. Nat. Prod. Sci. 12: 101-103.
  20. Aderogba MA, Ndhlala AR, Rengasamy KR, Van Staden J. 2013. Antimicrobial and selected in vitro enzyme inhibitory effects of leaf extracts, flavonols and indole alkaloids isolated from Croton menyharthii. Molecules 18: 12633-12644. https://doi.org/10.3390/molecules181012633
  21. Cren-Olive C, Wieruszeski J-M, Maes E, Rolando C. 2002. Catechin and epicatechin deprotonation followed by 13C NMR. Tetrahedron. Lett. 43: 4545-4549. https://doi.org/10.1016/S0040-4039(02)00745-1
  22. Kim HY, Moon BH, Lee HJ, Choi DH. 2004. Flavonol glycosides from the leaves of Eucommia ulmoides O. with glycation inhibitory activity. J. Ethnopharmacol. 93: 227-230. https://doi.org/10.1016/j.jep.2004.03.047
  23. Wang Y, Xie X, Liu L, Zhang H, Ni F, Wen J, et al. 2021. Four new flavonol glycosides from the leaves of Ginkgo biloba. Nat. Prod. Res. 35: 2520-2525. https://doi.org/10.1080/14786419.2019.1684282
  24. Zhang P, Xu L, Qian K, Liu J, Zhang L, Lee K-H, et al. 2011. Efficient synthesis and biological evaluation of epiceanothic acid and related compounds. Bioog. Med. Chem. Lett. 21: 338-341. https://doi.org/10.1016/j.bmcl.2010.11.004
  25. Vinh LB, Nguyet NTM, Ye L, Dan G, Phong NV, Anh HLT, et al. 2020. Enhancement of an in vivo anti-inflammatory activity of oleanolic acid through glycosylation occurring naturally in Stauntonia hexaphylla. Molecules 25: 3699.
  26. Vinh LB, Phong NV, Ali I, Dan G, Koh YS, Anh HLT, et al. 2020. Identification of potential anti-inflammatory and melanoma cytotoxic compounds from Aegiceras corniculatum. Med. Chem. Res. 29: 2020-2027 https://doi.org/10.1007/s00044-020-02613-5
  27. Newman DJ. 2021. Natural product based antibody drug conjugates: Clinical status as of November 9, 2020. J. Nat. Prod. 84: 917-931. https://doi.org/10.1021/acs.jnatprod.1c00065
  28. Vinh LB, Jang HJ, Phong NV, Dan G, Cho KW, Kim YH, et al. 2019. Bioactive triterpene glycosides from the fruit of Stauntonia hexaphylla and insights into the molecular mechanism of its inflammatory effects. Bioorg. Med. Chem. Lett. 29: 2085-2089. https://doi.org/10.1016/j.bmcl.2019.07.010
  29. Vinh LB, Lee Y, Han YK, Kang JS, Park JU, Kim YR, et al. 2017. Two new dammarane-type triterpene saponins from Korean red ginseng and their anti-inflammatory effects. Bioorg. Med. Chem. Lett. 27: 5149-5153. https://doi.org/10.1016/j.bmcl.2017.10.058
  30. Rho T, Jeong HW, Hong YD, Yoon K, Cho JY, Yoon KD. 2020. Identification of a novel triterpene saponin from Panax ginseng seeds, pseudoginsenoside RT8, and its antiinflammatory activity. J. Ginseng Res. 44: 145-153. https://doi.org/10.1016/j.jgr.2018.11.001
  31. Cuong NX, Hoang L, Hanh TTH, Van Thanh N, Nam NH, Thung DC, et al. 2017. Cytotoxic triterpene diglycosides from the sea cucumber Stichopus horrens. Bioorg. Med. Chem. Lett. 27: 2939-2942. https://doi.org/10.1016/j.bmcl.2017.05.003
  32. Patlolla JM, Rao CV. 2015. Anti-inflammatory and anti-cancer properties of β-Escin, a triterpene Saponin. Curr. Pharmacol. Rep. 1: 170-178. https://doi.org/10.1007/s40495-015-0019-9
  33. Dong S, Yang X, Zhao L, Zhang F, Hou Z, Xue P. 2020. Antibacterial activity and mechanism of action saponins from Chenopodium quinoa Willd. husks against foodborne pathogenic bacteria. Ind. Crops Prod. 149: 112350.
  34. Mostafa A, Sudisha J, El-Sayed M, Ito S-i, Ikeda T, Yamauchi N, et al. 2013. Aginoside saponin, a potent antifungal compound, and secondary metabolite analyses from Allium nigrum L. Phytochem. Lett. 6: 274-280. https://doi.org/10.1016/j.phytol.2013.03.001
  35. Sur P, Chaudhuri T, Vedasiromoni J, Gomes A, Ganguly D. 2001. Antiinflammatory and antioxidant property of saponins of tea [Camellia sinensis (L) O. Kuntze] root extract. Phytother. Res. 15: 174-176. https://doi.org/10.1002/ptr.696
  36. Zhang H-X, Wang Z-Z, Du Z-Z. 2022. Sensory-guided isolation and identification of new sweet-tasting dammarane-type saponins from Jiaogulan (Gynostemma pentaphyllum) herbal tea. Food Chem. 388: 132981.
  37. Fu J, Wang Z, Huang L, Zheng S, Wang D, Chen S, et al. 2014. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi). Phytother. Res. 28: 1275-1283. https://doi.org/10.1002/ptr.5188
  38. Cao TQ, Phong NV, Kim JH, Gao D, Anh HLT, Ngo V-D, et al. 2021. Inhibitory effects of cucurbitane-type triterpenoids from Momordica charantia fruit on lipopolysaccharide-stimulated pro-Inflammatory cytokine production in bone marrow-derived dendritic cells. Molecules 26: 4444.
  39. Duyen NT, Vinh LB, Phong NV, Khoi NM, Long PQ, Hien TT, et al. 2022. Steroid glycosides isolated from Paris polyphylla var. chinensis aerial parts and paris saponin II induces G1/S-phase MCF-7 cell cycle arrest. Carbohydr. Res. 519: 108613.