DOI QR코드

DOI QR Code

Feasibility study of CdZnTe and CdZnTeSe based high energy X-ray detector using linear accelerator

  • Beomjun Park (Department of Chemistry, Konkuk University) ;
  • Juyoung Ko (Department of Chemistry, Konkuk University) ;
  • Jangwon Byun (Department of Chemistry, Konkuk University) ;
  • Byungdo Park (Department of Radiation Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine) ;
  • Man-Jong Lee (Department of Chemistry, Konkuk University) ;
  • Jeongho Kim (Department of Radiation Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine)
  • Received : 2023.03.27
  • Accepted : 2023.05.01
  • Published : 2023.08.25

Abstract

CdZnTeSe (CZTS) has attracted attention for applications in X- and gamma-ray detectors owing to its improved properties compared to those of CdZnTe (CZT). In this study, we grew and processed single crystals of CZT and CZTS using the Bridgeman method to confirm the feasibility of using a dosimeter for high-energy X-rays in radiotherapy. We evaluated their linearity and precision using the coefficient of determination (R2) and relative standard deviation (RSD). CZTS showed sufficient RSD values lower than 1.5% of the standard for X-ray dosimetry, whereas CZT's RSD values increased dramatically under some conditions. CZTS exhibited an R2 value of 0.9968 at 500 V/cm, whereas CZT has an R2 value of 0.9373 under the same conditions. The X-ray response of CZTS maintains its pulse shape at various dose rates, and its properties are improved by adding selenium to the CdTe matrix to lower the defect density and sub-grain boundaries. Thus, we validated that CZTS shows a better response than CZT to high-energy X-rays used for radiotherapy. Further, the applicability of an onboard imager, a high-energy X-ray (>6 MV) image, is presented. The proposed methodology and results can guide future advances in X-ray dose detection.

Keywords

Acknowledgement

This research was supported by the Challengeable Future Defense Technology Research and Development Program through the Agency for Defense Development (ADD) funded by the Defense Acquisition Program Administration (DAPA) in 2022 (No. UI220006TD).

References

  1. J.H. Kim, B. Kim, W.-G. Shin, J. Son, C.H. Choi, J.M. Park, Ui-J. Hwang, J. in Kim, S. Jung l, 3D star shot analysis using MAGAT gel dosimeter for integrated imaging and radiation isocenter verification of MR-Linac system, J. Appl. Clin. Med. Phys. 23 (2022), e13615. 
  2. M. Ciocca, V. Piazzi, R. Lazzari, A. Vavassori, A. Luini, P. Veronesi, V. Galimberti, M. Intra, A. Guido, G. Tosi, U. Veronesi, R. Orecchia, Real-time in vivo dosimetry using micro-MOSFET detectors during intraoperative electron beam radiation therapy in early-stage breast cancer, Radiother. Oncol. 78 (2006) 213-216.  https://doi.org/10.1016/j.radonc.2005.11.011
  3. T.E. Schlesinger, Semiconductors and semimetals semiconductors for room temperature nuclear detector applications, Semicond, Semimetals 43 (1995) 240. 
  4. S.D. Sordo, L. Abbene, E. Caroli, A.M. Mancini, A. Zappettini, P. Ubertini, Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications, Sensors 9 (5) (2009) 3491-3526.  https://doi.org/10.3390/s90503491
  5. S. Watanabe, et al., The Si/CdTe semiconductor Compton camera of the ASTRO-H soft gamma-ray detector (SGD), Nucl. Instrum. Methods. Phys. Res. B NUCL INSTRUM METH A 765 (2014) 192-201.  https://doi.org/10.1016/j.nima.2014.05.127
  6. K. Iniewski, CZT detector technology for medical imaging, J. Instrum. 9 (2014) 11. C11001. 
  7. F. Glasser, V. Gerbe, P. Ouvrier-Buffet, M. Accensi, J.L. Girard, M. Renaud, J.L. Gersten-Mayer, CdZnTe high-energy radiography detector, Nucl. Instrum. Methods. Phys. Res. B NUCL INSTRUM METH A 458 (2001) 544-550, 1-2.  https://doi.org/10.1016/S0168-9002(00)00923-2
  8. J. Byun, Y. Kim, J. Seo, E. Kim, K. Kim, A. Jo, W. Lee, B. Park, Development and evaluation of photon-counting Cd0.875Zn0.125Te0.98Se0.02 detector for measuring bone mineral density, Phys. Eng. Sci. Med. (2023) 1-9. 
  9. B. Park, Y. Kim, J. Seo, J. Byun, V. Dedic, J. Franc, A.E. Bolotnikov, R.B. James, K. Kim, Bandgap engineering of Cd1-xZnxTe1-ySey (0< x< 0.27, 0< y< 0.026, Nucl. Instrum. Methods. Phys. Res. B NUCL INSTRUM METH A 1036 (2022), 166836. 
  10. U.N. Roy, G.S. Camarda, Y. Cui, R.B. James, Advances in CdZnTeSe for radiation detector applications, Radiation 1.2 (2021) 123-130.  https://doi.org/10.3390/radiation1020011
  11. S. Hwang, H. Yu, A.E. Bolotnikov, R.B. James, K. Kim, Anomalous Te inclusion size and distribution in CdZnTeSe, IEEE Trans. Nucl. Sci. 66 (11) (2019) 2329-2332.  https://doi.org/10.1109/TNS.2019.2944969
  12. U.N. Roy, G.S. Camarda, Y. Cui, R. Gul, A. Hossain, G. Yang, J. Zazvorka, V. Dedic, J. Franc, R.B. James, Role of selenium addition to CdZnTe matrix for room-temperature radiation detector applications, Sci. Rep. 9 (1) (2019) 1620. 
  13. O. Zelaya-Angel, J.G. Mendoza-Alvarez, M. Becerril, H. Navarro-Contreras, L. Tirado-Mejia, On the bowing parameter in Cd1-x ZnxTe, J. Appl. Phys. 95 (11) (2004) 6284-6288.  https://doi.org/10.1063/1.1699493
  14. S.K. Chaudhuri, M. Sajjad, J.W. Kleppingar, K.C. Mandal, Correlation of space charge limited current and γ-ray response of CdxZn1-xTe1-ySey room-temperature radiation detectors, IEEE Electron. Device Lett. 41 (9) (2020) 1336-1339.  https://doi.org/10.1109/LED.2020.3013800
  15. S.K. Chaudhuri, M. Sajjad, J.W. Kleppingar, K.C. Mandal, Charge transport properties in CdZnTeSe semiconductor room-temperature γ-ray detectors, J. Appl. Phys. 127 (24) (2020), 245706. 
  16. U.N. Roy, G.S. Camarda, Y. Cui, R. Gul, A. Hossain, G. Yang, J. Zazvorka, V. Dedic, J. Franc, R.B. James, Evaluation of CdZnTeSe as a high-quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects, Sci. Rep. 9 (1) (2019) 7303. 
  17. U.N. Roy, G.S. Camarda, Y. Cui, R.B. James, Performance study of virtual frisch grid CdZnTeSe detectors, Instruments 6 (4) (2022) 69. 
  18. J. Byun, J. Seo, B. Park, Growth and characterization of detector-grade CdMnTeSe, Nucl. Eng. Technol. 54 (11) (2022) 4215-4219.  https://doi.org/10.1016/j.net.2022.06.007
  19. B. Park, Y. Kim, J. Seo, K. Kim, Effectiveness of parylene coating on CdZnTe surface after optimal passivation, Nucl. Eng. Technol. 54 (12) (2022) 4693-4697.  https://doi.org/10.1016/j.net.2022.08.016
  20. L. Brualla, M. Rodriguez, J. Sempau, Energy Spectra of Varian Linacs, 2012. https://www.primoproject.net/primo/. 
  21. J.H. Hubbell, S.M. Seltzer, X-Ray Mass Attenuation Coefficients, 2004. https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients. 
  22. C.K. Mandal, S.H. Kang, M. Choi, A. Kargar, M.J. Harrison, D.S. McGregor, A.E. Bolotnikov, G.A. Carini, G.C. Camarda, R.B. James, Characterization of low-defect Cd0.9Zn0.1Te and CdTe crystals for high-performance frisch collar detectors, IEEE Trans. Nucl. Sci. 54 (4) (2007) 802-806.  https://doi.org/10.1109/TNS.2007.902371
  23. S.U. Egarievwe, K.-T. Chen, A. Burger, R.B. James, C.M. Lisse, Detection and electrical properties of Cd 1-xZn xTe detectors at elevated temperatures, J. X Ray Sci. Technol. 6 (4) (1996) 309-315.  https://doi.org/10.3233/XST-1996-6401
  24. S. Yang, M. Han, Y. Shin, J. Jung, Y. Choi, H. Cho, S. Park, Study on the applicability of semiconductor compounds for dose measurement in electron beam treatment, J. Korean Radiol. Soc. 14 (1) (2020) 1-6. 
  25. L.A.R. da Rosa, D.F. Regulla, Ute A. Fill, Reproducibility study of TLD-100 microcubes at radiotherapy dose level, Appl. Radiat. Isot. 50 (3) (1999) 573-577.  https://doi.org/10.1016/S0969-8043(98)00068-2
  26. Y.J. Heo, K.T. Kim, M.J. Han, C.W. Moon, J.E. Kim, J.K. Park, S.K. Park, Development of a stable and sensitive semiconductor detector by using a mixture of lead (II) iodide and lead monoxide for NDT radiation dose detection, J. Instrum. 13 (3) (2018), C03023. 
  27. B. Park, Y. Kim, J. Seo, J. Byun, K. Kim, Passivation effect on large volume CdZnTe crystals, Nucl. Eng. Technol. 54 (12) (2022) 4620-4624. https://doi.org/10.1016/j.net.2022.06.005