DOI QR코드

DOI QR Code

MGGC2.0: A preprocessing code for the multi-group cross section of the fast reactor with ultrafine group library

  • Kui Hu (North China Electric Power University, School of Nuclear Science and Engineering) ;
  • Xubo Ma (North China Electric Power University, School of Nuclear Science and Engineering) ;
  • Teng Zhang (North China Electric Power University, School of Nuclear Science and Engineering) ;
  • Xuan Ma (North China Electric Power University, School of Nuclear Science and Engineering) ;
  • Zifeng Huang (North China Electric Power University, School of Nuclear Science and Engineering) ;
  • Yixue Chen (North China Electric Power University, School of Nuclear Science and Engineering)
  • Received : 2023.03.31
  • Accepted : 2023.05.02
  • Published : 2023.08.25

Abstract

How to generate the precise broad group cross section is important for the fast reactor design. In this study, a fast reactor multi-group cross-section generation code MGGC2.0 are developed in-house for processing ultrafine group MATXS format library. Validation and verification are performed for MGGC2.0 code by applying the benchmarks of ICSBEP handbook, and the results of MGGC2.0 agree well with that of MCNP. The consistent PN method with critical buckling search is in good agreement that condensed with TWODANT flux and flux moment for the inner core and outer core region. For the radial blanket and reflector, two region approximation method has been applied in MGGC2.0 by using collision Probability Method neutron flux solver. The RBEC-M benchmark was used to verify the power distribution calculation, and the relative error of power distribution comparison with the reference are less than 0.8% in the fuel region and the maximum relative error is 5.58% in the reflector region. Therefore, the precise broad cross section can be generated by MGGC2.0 for fast reactor.

Keywords

Acknowledgement

This study was supported by the National Natural Science Foundation of China (No.11875128)

References

  1. J. Bouchard, R. Bennett, Generation IV advanced nuclear energy systems, Nucl. Plant J. 26 (2008) 2.
  2. W.S. Yang, Fast reactor physics and computational methods[J], Nucl. Eng. Technol. 44 (2) (2012) 177-198. https://doi.org/10.5516/NET.01.2012.504
  3. Xianan Du, Liangzhi Cao, Youqi Zheng, Hongchun Wu, A hybrid method to generate few-group cross sections for fast reactor analysis, J. Nucl. Sci. Technol. (2018), https://doi.org/10.1080/00223131.2018.1452650.
  4. C.H. Lee, W.S. Yang, Status report on multigroup cross section generation code development for high-fidelity deterministic neutronics simulation system, ANL-AFCI-207 (2007) 5-7.
  5. R.E. MacFarlane, The NJOY Nuclear Data Processing System, 2012. Version 2012, LA-UR-12-27079.
  6. R.E. MacFarlane, Code System to Produce Neutron, Photon, and Particle Transport Tables for Discrete-Ordinates and Diffusion Codes from Cross Sections in MATXS Format, 1994. PSR-317.
  7. N.M. Greene, BONAMI: RESONANCE SELF-SHIELDING BY THE BONDARENKO METHOD, 2011. ORNL/TM-2005/39.
  8. V. Gopalakrishnan, S. Ganesan, SELF-SHIELDING and energy dependence of dilution cross-section in the resolved resonance region, Ann. Nucl. Energy 25 (No. 11) (1998) 839-857. https://doi.org/10.1016/S0306-4549(97)00125-4
  9. C. Lee, W.S. Yang, MC2-3: multigroup cross section generation code for fast reactor analysis[J], Nucl. Sci. Eng. 187 (3) (2017) 268-290. https://doi.org/10.1080/00295639.2017.1320893
  10. T. Hazama, G. Chiba, K. Sugino, Development of a fine and ultra-fine group cell calculation code SLAROMUF for fast reactor analyses, J. Nucl. Sci. Technol. 43 (8) (2006) 908-918. https://doi.org/10.1080/18811248.2006.9711176
  11. H.J. Park, H.J. Shim, H.G. Joo, C.H. Kim, Generation of few-group diffusion constants by Monte Carlo code McCARD, Nucl. Sci. Eng. 172 (2012) 66-77. https://doi.org/10.13182/NSE11-22
  12. Tung Dong Cao Nguyen, Hyunsuk Lee, Deokjung Lee, Use of Monte Carlo code MCS for multigroup cross section generation for fast reactor analysis, Nucl. Eng. Technol. 53 (9) (2021) 2788-2802. https://doi.org/10.1016/j.net.2021.03.005
  13. William Boyd ORCID Icon, Nelson Adam, Paul K. Romano, Samuel Shaner, Benoit forget &kord smith, multigroup cross-section generation with the OpenMC Monte Carlo particle transport code, Nucl. Technol. 205 (7) (2019) 928-944. https://doi.org/10.1080/00295450.2019.1571828
  14. E. Fridman, J. Leppanen, On the use of the Serpent Monte Carlo code for few-group cross section generation, Ann. Nucl. Energy 38 (6) (2011) 1399-1405. https://doi.org/10.1016/j.anucene.2011.01.032
  15. Ching-Sheng Lin, WonSik Yang, An assessment of the applicability of multi-group cross sections generated with Monte Carlo method for fast reactor analysis, Nucl. Eng. Technol. 52 (2020) 2733-2742. https://doi.org/10.1016/j.net.2020.05.029
  16. J. Leppanen, M. Pusa, E. Fridman, Overview of methodology for spatial homogenization in the serpent 2 Monte Carlo code, Ann. Nucl. Energy 96 (2016) 126-136. https://doi.org/10.1016/j.anucene.2016.06.007
  17. C. Lee, W.S. Yang, MC2-3: multigroup cross section generation code for fast reactor analysis[J], Nucl. Sci. Eng. 187 (3) (2017) 268-290. https://doi.org/10.1080/00295639.2017.1320893
  18. C.H. Wan, et al., Covariance comparison between ENDF/B-VII.1 and ENDF/BVIII.0 with application for the UAM-LWR exercise, Ann. Nucl. Energy 138 (2020) 107-183. https://doi.org/10.1016/j.anucene.2019.107183
  19. Xubo Ma, Yuqin Huang, Qu Wu, Feng Zhou, Xingjie Peng, Kui Hu, Bin Zhang, Uncertainty comparison between ENDF/B-VIII.0 and ENDF/B-VII.1 for fast reactor BN-600 using high-precision sampling method, Ann. Nucl. Energy 161 (2021), 108457.
  20. B. Friederike, Systematic Sensitivity and Uncertainty Analysis of Sodium-Cooled Fast Reactor Systems PHD Thesis, EPFL, 2020.
  21. D. Brown, M.B. Chadwick, R. Capote, et al., ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data[J], Nucl. Data Sheets 148 (2018) 1-142. https://doi.org/10.1016/j.nds.2018.02.001
  22. Z.G. Ge, R.R. Xu, H.C. Wu, et al., CENDL-3.2: the new version of Chinese general purpose evaluated nuclear data library[J], EPJ Web Conf. 239 (2020), 09001.
  23. R. Macfarlane, D.W. Muir, R.M. Boicourt, et al., The NJOY Nuclear Data Processing System, Version 2016: LA-UR-17-20093[R], Los Alamos National Laboratory, Los Alamos, United States, 2017.
  24. Qingming He, Liangzhi Cao, 4 - Current-Coupled Collision Probability Method, Deterministic Numerical Methods for Unstructured-Mesh Neutron Transport Calculation, Woodhead Publishing Series in Energy, 2021, pp. 61-71.
  25. R.E. Alcouffe, F.W. Brinkley, D.R. Marr, et al., User's Guide for TWODANT: A Code Package for Two Dimensional, Diffusion-Accelerated, Neutral-Particle Transport. LA-10049-M[R], Los Alamos National Laboratory, 1984.
  26. Jr. Engle, W.A. W, USERS MANUAL for ANISN: A One Dimensional Discrete Ordinates Transport Code with Anisotropic Scattering, 1967. NSA-21-021370.
  27. R. Macfarlane, TRANSX 2: a Code for Interfacing MATXS Cross-Section Libraries to Nuclear Transport Codes: LA-12312-MS[R], Los Alamos National Laboratory, Los Alamos, 1993.
  28. Monte Carlo Team, MCNP d A General Monte CarloN-Particle Transport Code, LA-CP-03-0284, 2003.
  29. Xianan Du, Liangzhi Cao, Youqi Zheng, Improvement and application of SARAX-FXS codein calculation of heterogeneous fast reactor core [J], Atomic Energy Sci. Technol. 51 (12) (2017) 2271-2277. https://doi.org/10.1021/acs.est.6b03983
  30. L. Zheng, S. Huang, K. Wang, Criticality benchmarking of ENDF/B-VIII.0 and JEFF-3.3 neutron data libraries with RMC code[J], Nucl. Eng. Technol. 52 (9) (2020) 1917-1925. https://doi.org/10.1016/j.net.2020.02.022
  31. James J. Sienicki, Anton Moisseytsev, et al., Status Report on the Small Secure Transportable Autonomous Reactor (SSTAR)/Lead-Cooled Fast Reactor (LFR) and Supporting Research and Development, ANL-GenIV-089, 2006.