DOI QR코드

DOI QR Code

Electrolytic capacitorless STATCOM with both inductive and capacitive VAR compensation modes

  • Received : 2023.02.14
  • Accepted : 2023.05.11
  • Published : 2023.08.20

Abstract

This paper proposes an effective VAR source established as a cascaded H-bridge (CHB) static compensator (STATCOM), which is based on the flux cancellation method. The conventional CHB-STATCOM uses a low-frequency large capacitor as a source. The required capacitance value of the capacitor increases as a function of the amount of VAR produced to compensate the power system. The proposed topology is based on flux cancellation. Therefore, the source of VAR in this case is not limited by the capacitors or the power decoupling transformer size. The sub-module (SM) of the proposed topology comprises of a CHB module with power decoupling circuits. The double-frequency ripple powers on the sub-module (SM) capacitors, which have a phase shift of 120° with respect to each other. The ripple powers are derived from each of the three phases toward a common magnetic core to cancel each other out. An isolated bidirectional triple port dual half-bridge converter is utilized for the flux cancellation process. In this converter, the main challenges are leakage inductances and the high voltage insulation among the three windings of the high-frequency transformer. An α β-frame-based model is proposed, using the generalized state-space averaging method, for the flux cancellation circuit. Furthermore, the size is significantly reduced by the proposed method, since a small sub-module capacitance of a few microfarads is sufficient to operate the CHB-STATCOM. The analysis and the controller design process are presented, followed by simulation and hardware validations.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korean (NRF) grant funded by the Korea government (MIST) (No. NRF-2019R1A2C1084605).

References

  1. Sano, K., Takasaki, M.: A transformer-less d-STATCOM based on a multi-voltage cascade converter requiring no DC sources. IEEE Trans. Power Electron. 27(6), 2783-2795 (2012) https://doi.org/10.1109/TPEL.2011.2174383
  2. Gultekin, B., Ermis, M.: Cascaded multilevel converter-based transmission STATCOM: system design methodology and development of a 12 kV ±12 MVAr power stage. IEEE Trans. Power Electron. 28(11), 4930-4950 (2013) https://doi.org/10.1109/TPEL.2013.2238642
  3. Farivar, G., Hredzak, B., Agelidis, V.G.: Reduced-capacitance thinfilm H-bridge multilevel STATCOM control utilizing an analytic filtering scheme. IEEE Trans. Ind. Electron. 62(10), 6457-6468 (2015) https://doi.org/10.1109/TIE.2015.2420675
  4. Wang, H., Liserre, M., Blaabjerg, F.: Toward reliable power electronics-challenges, design tools and opportunities. IEEE Ind. Electron. Mag. 7(2), 17-26 (2013) https://doi.org/10.1109/MIE.2013.2252958
  5. Zeller, H.R.: Cosmic ray induced failures in high power semiconductor devices. Microelectron. Reliab. 37, 1711-1718 (1997) https://doi.org/10.1016/S0026-2714(97)00146-7
  6. Li, S., Zhu, G.-R., Tan, S.-C., Hui, S.Y.: Direct AC/DC rectifier with mitigated low-frequency ripple through inductor-current waveform control. IEEE Trans. Power Electron. 30(8), 4336-4348 (2015) https://doi.org/10.1109/TPEL.2014.2360209
  7. Wang, S., Ruan, X., Yao, K., Tan, S.-C., Yang, Y., Ye, Z.: A flicker-free electrolytic capacitor-less AC-DC LED driver. IEEE Trans. Power Electron. 27(11), 4540-4548 (2012) https://doi.org/10.1109/TPEL.2011.2180026
  8. Camponogara, D., Ferreira, G.F., Campos, A., Dalla Costa, M.A., Garcia, J.: Offline LED driver for street lighting with an optimized cascade structure. IEEE Trans. Ind. Appl. 49(6), 2437-2443 (2013) https://doi.org/10.1109/TIA.2013.2263631
  9. Arias, M., Lamar, D.G., Sebastian, J., Balocco, D., Diallo, A.A.: High-efficiency LED driver without electrolytic capacitor for street lighting. IEEE Trans. Ind. Appl. 49(1), 127-137 (2013) https://doi.org/10.1109/TIA.2012.2227644
  10. Farivar, G., Townsend, C.D., Hredzak, B., Pou, J., Agelidis, V.G.: Low-capacitance cascaded H-bridge multilevel STATCOM. IEEE Trans. Power Electron. 32(3), 1744-1754 (2017) https://doi.org/10.1109/TPEL.2016.2557351
  11. Farivar, G., Townsend, C.D., Hredzak, B., Pou, J., Agelidis, V.G.: Passive reactor compensated cascaded H-bridge multilevel LC-STATCOM. IEEE Trans. Power Electron. 32(11), 8338-8348 (2017) https://doi.org/10.1109/TPEL.2016.2641043
  12. Isobe, T., Shiojima, D., Kato, K., Hernandez, Y.R.R., Shimada, R.: Full-bridge reactive power compensator with minimized-equipped capacitor and its application to static var compensator. IEEE Trans. Power Electron. 31(1), 224-234 (2016) https://doi.org/10.1109/TPEL.2015.2412954
  13. Isobe, T., Zhang, L., Tadano, H., Suul, J.A., and Molinas, M.: Control of DC capacitor peak voltage in reduced capacitance single-phase STATCOM. In Proc. IEEE 17th Workshop Control Model. Power Electron., pp. 1-8 (2016)
  14. Jeon, Y., Townsend, C.D., Tafti, H.D., Rodriguez, E., Farivar, G., Park, J., Pou, J.: An enhanced static compensator with DC-link voltage shaping method. IEEE Trans. Power Electron. 35(3), 2488-2500 (2020) https://doi.org/10.1109/TPEL.2019.2928367
  15. Farivar, G., Townsend, C.D., Pou, J., Hredzak, B.: Low-capacitance STATCOM with modular inductive filter. IEEE Trans. Power Electron. 34(4), 3192-3203 (2019) https://doi.org/10.1109/TPEL.2018.2849104
  16. Farivar, G., and Pou, J.: LC-STATCOM with symmetrical I-V characteristic-power loss analysis. In: Proc. 19th Eur. Conf. Power Electron. Appl., pp. 1-10 (2017)
  17. Farivar, G., Pou, J., and Tripathi, A.: LC-STATCOM with symmetrical I-V characteristic-total harmonic distortion study. In: Proc. Asian Conf. Energy, Power Transp. Electrific., pp. 1-5 (2017)
  18. Petrili, D., Nami, A., Townsed, C. D., and de la Parra, H. Z.: Active ripple energy storage for a cascaded H-bridge multilevel converter. In: Proc. 18th Eur. Conf. Power Electron. Appl., pp. 1-10 (2016)
  19. Tang, Y., Blaabjerg, F.: Decoupling of fluctuating in single-phase systems through a symmetrical half-bridge circuit. IEEE Trans. Power Electron. 30(4), 1855-1865 (2015) https://doi.org/10.1109/TPEL.2014.2327134
  20. Chao, K.-H. and Cheng, P.-T.: Power decoupling methods for single-phase three-poles AC/DC converters. In: Proc. IEEE Energy Convers. Congr. Exp., pp. 3742-3747 (2009)
  21. Huang, X., Zhang, K., Kan, J., Xiong, J.: Modified modular multilevel converter with submodule voltage fluctuation suppression. J. Power Electron. 17(4), 942-952 (2017)
  22. Kong, Z., Huang, X., Wang, Z., Xiong, J., Zhang, K.: Active power decoupling for submodules of a modular multilevel converter. IEEE Trans. Power Electron. 33(1), 125-136 (2018) https://doi.org/10.1109/TPEL.2017.2661539
  23. Irfan, M.S., Ahmed, A., Park, J.H.: Power-decoupling of a multiport isolated converter for an electrolytic-capacitorless multilevel inverter. IEEE Trans. Power Electron. 33(8), 6656-6671 (2018) https://doi.org/10.1109/TPEL.2017.2763168
  24. Yang, Z., Sun, J., Zha, X., Tang, Y.: Power decoupling control for capacitance reduction in cascaded-H-bridge-converter-based regenerative motor drive systems. IEEE Trans. Power Electron. 34(1), 538-549 (2019) https://doi.org/10.1109/TPEL.2018.2818719
  25. Shi, Y., Li, R., Xue, Y., Li, H.: High-frequency-link-based grid-tied PV system with small DC-link capacitor and low-frequency ripple-free maximum power point tracking. IEEE Trans. Power Electron. 31(1), 328-339 (2016) https://doi.org/10.1109/TPEL.2015.2411858
  26. Wang, J., Wang, P.: Power decoupling control for modular multilevel converter. IEEE Trans. Power Electron 33(11), 9296-9309 (2018) https://doi.org/10.1109/TPEL.2018.2799321
  27. Diab, M.S., Massoud, A.M., Ahmed, S., Williams, B.W.: A modular multilevel converter with ripple-power decoupling channels for three-phase MV adjustable-speed drives. IEEE Trans. Power Electron. 34(5), 4048-4063 (2019)
  28. Achanta, P.K., Johnson, B.B., Seo, G., Maksimovic, D.: A multilevel DC to three-phase AC architecture for photovoltaic power plants. IEEE Trans. Energy Conv. 34(1), 181-190 (2019) https://doi.org/10.1109/TEC.2018.2877151
  29. Costa, L.F., Buticchi, G., Liserre, M.: Quad-active-bridge DC-DC converter as cross-link for medium-voltage modular inverters. IEEE Trans. Ind. Appl. 53(2), 1243-1253 (2017) https://doi.org/10.1109/TIA.2016.2633539
  30. Li, X., Cheng, L., He, L., Zhu, Z., Yang, Y., Wang, C.: Capacitor voltage ripple minimization of a modular three-phase AC/DC power electronics transformer with four-winding power channel. IEEE Access 8, 119594-119608 (2020) https://doi.org/10.1109/ACCESS.2020.3005530
  31. Irfan, M.S., Ahmed, A., Park, J., Seo, C.: Current-sensorless power-decoupling phase-shift dual-half-bridge converter for DC-AC power conversion systems without electrolytic capacitor. IEEE Trans. Power Electron. 32(5), 3610-3622 (2017) https://doi.org/10.1109/TPEL.2016.2587813
  32. Irfan, M.S., Tawfik, M.A., Ahmed, A., Park, J.-H.: A novel electrolytic capacitor-less MMC with magnetic power decoupling method. IEEE J. Emerg. Sel. Top. Power Electron. 9(2), 1976- 1993 (2021) https://doi.org/10.1109/JESTPE.2020.2997983
  33. https://www.mouser.com/c/passive-components/capacitors/film-capacitors/?capacitance=100%20uF&marcom=163917370&voltage%20rating%20dc=1.2%20kVDC&sort=capacitance
  34. https://www.mouser.kr/c/passive-components/capacitors/aluminum-electrolytic-capacitors/aluminum-electrolytic-capacitors-screw-terminal/?q=electrolytic%20capacitors&capacitance=2200%20uF&v
  35. Hurley, W.G., Wolfe, W.H.: Transformers and inductors for power electronics:theory, design and applications, 1st edn. Wiley, Chichester (2013)
  36. https://www.hitachi.com/New/cnews/month/2021/08/210825.pdf
  37. https://www.richardsonrfpd.com/docs/rfpd/Cree50kWBoostr.pdf
  38. She, X., Huang, A.Q., Burgos, R.: Review of solid-state transformer technologies and their application in power distribution systems. IEEE J. Emerg. Select. Top. Power Electron. 1(3), 186-198 (2013) https://doi.org/10.1109/JESTPE.2013.2277917
  39. Yeh, C.S. and Lai, J. S.: A study on high frequency transformer design in medium-voltage solid-state transformers. In: 2018 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), pp. 1-5 (2018)
  40. Madhusoodhanan, S., et al.: Solid-state transformer and MV grid tie applications enabled by 15 kV SiC IGBTs and 10 kV SiC MOSFETs based multilevel converters. IEEE Trans. Ind. Appl. 51(4), 3343-3360 (2015) https://doi.org/10.1109/TIA.2015.2412096
  41. Saleh, S.A., et al.: Solid-state transformers for distribution systems-part II: deployment challenges. IEEE Trans. Ind. Appl. 55(6), 5708-5716 (2019) https://doi.org/10.1109/TIA.2019.2938143
  42. https://www.businesswire.com/news/home/20210817005402/en/Global-Solid-State-Transformer-Market-Report-2021-Opportunity-Analysis-and-Industry-Forecast-2020-2028---ResearchAndMarkets.com
  43. Ge, X., Gao, F.: Flexible third harmonic voltage control of low capacitance cascaded H-bridge STATCOM. IEEE Trans. Power Electron. 33(3), 1884-1889 (2018)
  44. Liu, Q., et al.: Discontinuous modulation of a cascaded H-bridge low-capacitance StatCom. IEEE Trans. Power Electron 37(3), 2790-2800 (2022) https://doi.org/10.1109/TPEL.2021.3114976
  45. Rodriguez, E., et al.: Enhancing inductive operation of low-capacitance cascaded H-bridge StatComs using optimal third-harmonic circulating current. IEEE Trans. Power Electron 36(9), 10788-10800 (2021) https://doi.org/10.1109/TPEL.2021.3063608
  46. Rodriguez-Ramos, E., Leyva, R., Farivar, G.G., Townsend, C.D., Pou, J.: Operating limits for low-capacitance cascaded H-bridge static compensators. IEEE Trans. Power Electron 37(3), 3421-3433 (2022) https://doi.org/10.1109/TPEL.2021.3111201
  47. Farivar, G., Hredzak, B., Agelidis, V.G.: Reduced-capacitance thin-film H-bridge multilevel STATCOM control utilizing an analytic filtering scheme. IEEE Trans. Industr. Electron. 62(10), 6457-6468 (2015) https://doi.org/10.1109/TIE.2015.2420675
  48. Tanaka, T., Wang, H., Blaabjerg, F.: A DC-link capacitor voltage ripple reduction method for a modular multilevel cascade converter with single delta bridge cells. IEEE Trans. Ind. Appl. 55(6), 6115-6126 (2019) https://doi.org/10.1109/TIA.2019.2934024
  49. Huang, X., Wang, Z., Kong, Z., Xiong, J., Zhang, K.: Modular multilevel converter with three-port power channels for medium-voltage drives. IEEE J. Emerg. Sel. Top. Power Electron 6(3), 1495-1507 (2018) https://doi.org/10.1109/JESTPE.2017.2770162
  50. Liu, Y., Zhang, W., Sun, Y., Su, M., Xu, G., Dan, H.: Review and comparison of control strategies in active power decoupling. IEEE Trans. Power Electron 36(12), 14436-14455 (2021) https://doi.org/10.1109/TPEL.2021.3087170