DOI QR코드

DOI QR Code

General method for state-space modeling and nonlinear control of single-phase cascaded multilevel inverters with LCL coupling

  • Hassan Manaf Miralilu (Department of Electrical Engineering, Ardabil Branch, Islamic Azad University) ;
  • Mahdi Salimi (Faculty of Engineering and Science, University of Greenwich) ;
  • Jafar Soltani (Faculty of Electrical and Computer Engineering, Isfahan University of Technology) ;
  • Adel Akbarimajd (Department of Electrical Engineering, University of Mohaghegh Ardabili)
  • Received : 2022.12.28
  • Accepted : 2023.05.26
  • Published : 2023.08.20

Abstract

Due to the nonlinear behavior of grid-connected cascaded multilevel inverters (GCCMI), the use of nonlinear controllers can guarantee system stability over a wide range of operation. Therefore, state-space modeling is required to design nonlinear controllers. In this manuscript, a comprehensive method is proposed for the general state-space modeling of an n-level GCCMI with LCL coupling. To validate the accuracy of obtained state-space model, an experimental setup of a cascaded multilevel inverter including two H-bridges has been implemented. The outputs of the state-space model are compared with the simulation and experimental results of the GCCMI. This shows that the proposed model is compatible with a real closed-loop system. The simulations were performed using EMTDC/PSCAD software. In the following, the designed general model is used to develop a nonlinear controller based on the Lyapunov stability criteria for a multilevel shunt active power filter (SAPF). Results show that the designed controller is stable and robust in a wide range of operating point changes.

Keywords

Acknowledgement

This article was derived from Ph.D. degree thesis in Islamic Azad University-Ardabil branch.

References

  1. Zhang, Z., Zhao, J., Liu, S., et al.: Asymmetrical SPWM-based control scheme for BESS-integrated UPQC with hybrid connected configuration. J. Power Electron. 22, 1735-1745 (2022) https://doi.org/10.1007/s43236-022-00483-1
  2. Siddique, M.D., Mekhilef, S., Mohamed Shah, N., Memon, M.A.: Optimal design of a new cascaded multilevel inverter topology with reduced switch count. IEEE Access 7, 24498-24510 (2019) https://doi.org/10.1109/ACCESS.2019.2890872
  3. Rodriguez, J., Lai, J.S., Peng, F.Z.: Multilevel converters: a survey of topologies, controls and applications. IEEE Trans. Ind. Electr. 49(4), 724-738 (2002) https://doi.org/10.1109/TIE.2002.801052
  4. Moeini, A., Iman-Eini, H., Bakhshizadeh, M.: Selective harmonic mitigationpulse- width modulation technique with variable DC-link voltages in single and three-phase cascaded H-bridge inverters. IET Power Electron. 7(2), 924-932 (2014) https://doi.org/10.1049/iet-pel.2013.0315
  5. Lee, E.J., Lee, K.B.: Performance improvement of cascaded H-bridge multilevel inverters with modified modulation scheme. J Power Electr. 21(30), 541-552 (2021) https://doi.org/10.1007/s43236-020-00200-w
  6. Huang, Q., Huang, A.Q.: Feedforward proportional carrier-based PWM for cascaded H-bridge PV inverter. IEEE J. Emerg. Sel. Top. Power Electr. 6(4), 2192-2205 (2018) https://doi.org/10.1109/JESTPE.2018.2817183
  7. Li, X., Fang, J., Tang, Y., Wu, X., Geng, Y.: Capacitor-voltage feedforward with full delay compensation to improve weak grids adaptability of LCL filtered grid-connected converters for distributed generation systems. IEEE Trans. Power Electr. 33(1), 749-764 (2018) https://doi.org/10.1109/TPEL.2017.2665483
  8. Jayalath, S., Hanif, M.: An LCL-filter design with optimum total inductance and capacitance. IEEE Trans. Power Electr. 33(8), 6687-6698 (2018) https://doi.org/10.1109/TPEL.2017.2754100
  9. Jayalath, S., Hanif, M.: Generalized LCL-filter design algorithm for grid-connected voltage-source inverter. IEEE Trans. Ind. Electr. 64(3), 1905-1915 (2017) https://doi.org/10.1109/TIE.2016.2619660
  10. Wang, J., Burgos, R., Boroyevich, D.: Switching-cycle state-space modeling and control of the modular multilevel converter. IEEE J. Emerg. Sel. Top. Power Electr. 2(4), 1159-1170 (2014) https://doi.org/10.1109/JESTPE.2014.2354393
  11. Diaz, G.B., Freytes, J., Guillaud, X., D'Arco, S., Suul, J.A.: Generalized voltage based state-space modeling of modular multilevel converters with constant equilibrium in steady state. IEEE J. Emerg. Sel. Top. Power Electr. 6(2), 707-725 (2018) https://doi.org/10.1109/JESTPE.2018.2793159
  12. Xu, Z., Li, B., Wang, Sh., Zhang, Sh., Xu, D.: Generalized single-phase harmonic state space modeling of the modular multilevel converter with zero-sequence voltage compensation. IEEE Trans. Ind. Electron. 66(8), 6416-6426 (2019) https://doi.org/10.1109/TIE.2018.2885730
  13. Chaves, M., Margato, E., Silva, J.F., Pinto, S.F.: Generalized state-space modeling for m-level diode-clamped multilevel converters. In: Mathematical methods in engineering, pp. 67-85. Springer (2014)
  14. Ren, Q., Xiao, F., Ai, S.: Model analysis, simplified control and sensitivity verification of modular multilevel DC-DC converter with parallel branches. J. Power Electr. 20(2), 428-442 (2020) https://doi.org/10.1007/s43236-020-00032-8
  15. Lyu, J., Zhang, X., Cai, X., Molinas, M.: Harmonic state-space based small-signal impedance modeling of a modular multilevel converter with consideration of internal harmonic dynamics. IEEE Trans. Power Electr. 34(3), 2134-2148 (2019) https://doi.org/10.1109/TPEL.2018.2842682
  16. Son, G., Kim, H.J., Cho, B.H.: Improved modulated carrier control with on-time doubler for a single-phase shunt active power filter. IEEE Trans. Power Electr. 33(2), 1715-1723 (2018) https://doi.org/10.1109/TPEL.2017.2682794
  17. Czarnecki, L.S., Ginn, H.L.: The efect of the design method on efficiency of resonant harmonic filters. IEEE Trans. Power Deliv. 20(1), 286-291 (2005) https://doi.org/10.1109/TPWRD.2004.837822
  18. Yang, X., Wang, K., Kim, J., et al.: Artificial neural network-based FCS-MPC for three-level inverters. J. Power Electron. 22, 2158-2165 (2022) https://doi.org/10.1007/s43236-022-00535-6
  19. Morales, J., de Vicuna, L.G., Guzman, R., Castilla, M., Miret, J.: Modeling and sliding mode control for three-phase active power filters using the vector operation technique. IEEE Trans. Ind. Electr. 65(9), 6828-6838 (2018) https://doi.org/10.1109/TIE.2018.2795528
  20. Salimi, M., Soltani, J., Zakipour, A.: Experimental design of the adaptive backstepping control technique for singlephase shunt active power filters. IET Power Electron. 10(8), 911-918 (2017) https://doi.org/10.1049/iet-pel.2016.0366