Acknowledgement
This work was supported in part by the China Scholarship Council, Doctoral Research Startup Fund of Beijing Institute of Graphic Communication and the Youth Growth Foundation of Guizhou province KY [2019]155.
References
- Samajdar, D., Bhattacharya, T.: Capacitor voltage ripple optimization in modular multilevel converter using synchronous reference frame energy ripple controller. IEEE Trans Power Electron 37(7), 7883-7895 (2022) https://doi.org/10.1109/TPEL.2022.3150570
- Xiao, Q., Jin, Y., Jia, H., et al.: Modulated model predictive control for multilevel cascaded H-bridge converter-based static synchronous compensator. IEEE Trans Industr Electron 69(2), 1091-1102 (2021) https://doi.org/10.1109/TIE.2021.3056953
- Mello, J.P.R.A., Jacobina, C.B., da Silva, I.R.F.M.P.: Multilevel reduced controlled switches AC-DC power conversion cells. IEEE Trans Ind Appl 53(3), 2233-2244 (2017) https://doi.org/10.1109/TIA.2017.2655488
- Cheng, H., Kong, J., Jiang, J., Wang, C., Wang, P.: Control strategy for three-phase bridgeless rectifier under unbalanced grid conditions 2018. Piscataway, IEEE International Power Electronics and Application Conference and Exposition (PEAC) (2018)
- Cheng, H., Kong, J., Wang, P., Wang, C.: Hybrid control scheme for three-phase multilevel unidirectional rectifier under unbalanced input voltages. IEEE Access 7, 29989-30001 (2019) https://doi.org/10.1109/ACCESS.2019.2897799
- Rocha, N., da Costa, A.E.L., Jacobina, C.B.: Parallel of two unidirectional AC-DC-AC three-leg converters to improve power quality. IEEE Trans Power Electron 33(9), 7782-7794 (2018) https://doi.org/10.1109/TPEL.2017.2771464
- Wang, C., Zhuang, Y., Jiao, J., Zhang, H., Wang, C., Cheng, H.: Topologies and control strategies of cascaded bridgeless multilevel rectifiers. IEEE J Emerg Sel Top Power Electron 5(1), 432-444 (2017) https://doi.org/10.1109/JESTPE.2016.2626788
- Cheng, H., Kong, J., Wang, X., Wang, P., Chen, T., Wang, C.: Power factor adjustment and input current distortion mitigation for three-phase unidirectional rectifier. IET Power Electron 12(7), 1816-1824 (2019) https://doi.org/10.1049/iet-pel.2018.6233
- Khan, S.A., Guo, Y., Zhu, J.: Model predictive observer based control for single-phase asymmetrical T-Type AC/DC power converter. IEEE Trans Ind Appl 55(2), 2033-2044 (2019) https://doi.org/10.1109/TIA.2018.2877397
- Lee, J., Lee, K.: Predictive control of vienna rectifiers for PMSG systems. IEEE Trans Industr Electron 64(4), 2580-2591 (2017) https://doi.org/10.1109/TIE.2016.2644599
- Li, X., Sun, Y., Wang, H., Su, M., Huang, S.: A hybrid control scheme for three-phase vienna rectifiers. IEEE Trans Power Electron. 33(1), 629-640 (2018) https://doi.org/10.1109/TPEL.2017.2661382
- X. Yangxu, Z. Danhong, Z. Huaiun, W. Lianshun, Q. Yue and L. Zhiwen. 2018. Neural network- fuzzy adaptive PID controller based on VIENNA rectifier. Chinese Automation Congress (CAC), Xi'an, China, pp. 583-588
- Jia, Z., Cong, W., Hong, C., et al.: Research on modulation strategy and balance control for DC-link voltages in triple line-voltage cascaded VIENNA converter. Trans China Electrotech Soc 16(1), 3835-3844 (2018)
- Li, J., Lv, X., Zhao, B., Zhang, Y., Zhang, Q., Wang, J.: Research on passivity based control strategy of power conversion system used in the energy storage system. IET Power Electron 12(3), 392-399 (2019) https://doi.org/10.1049/iet-pel.2018.5620
- Cheng, H., Yang, D., Wang, C.: Research on the nonlinear control strategy of three-phase bridgeless rectifier under unbalanced grids. Electronics 10(24), 3090 (2021)
- Dell'Aquila, A., Liserre, M., Monopoli, V.G., Rotondo, P.: An energy-based control for an n-H-bridges multilevel active rectifier. IEEE Trans Industr Electron 52(3), 670-678 (2005) https://doi.org/10.1109/TIE.2005.843971
- Mehrasa, M., Adabi, M.E., Pouresmaeil, E., et al.: Passivity-based control technique for integration of DG resources into the power grid. Int J Electr Power Energy Syst 58, 281-290 (2014) https://doi.org/10.1016/j.ijepes.2014.01.034
- Hassan M A, Su C L, Chen F Z, et al. 2021. Adaptive passivity-based control of dc-dc boost power converter supplying constant power and constant voltage loads. IEEE Transactions on Industrial Electronics,
- Lee, T.-S.: Lagrangian modeling and passivity-based control of three-phase AC/DC voltage-source converters. IEEE Trans Industr Electron 51(4), 892-902 (2004) https://doi.org/10.1109/TIE.2004.831753
- Komurcugil, H.: Improved passivity-based control method and its robustness analysis for single-phase uninterruptible power supply inverters. IET Power Electron 8(8), 1558-1570 (2015) https://doi.org/10.1049/iet-pel.2014.0706