DOI QR코드

DOI QR Code

Modified passivity-based control method for three-phase cascaded unidirectional multilevel converters

  • Jiayi Kong (School of Mechanical and Electrical Engineering, Beijing Institute of Graphic Communication)
  • Received : 2022.09.09
  • Accepted : 2023.02.08
  • Published : 2023.08.20

Abstract

In this paper, taking into account the unidirectional conduction property of diodes, with an emphasis on the enhancement of system tolerance and robustness, a modified passivity-based control (PBC) method is introduced to three-phase cascaded unidirectional multilevel converters. This is the first time the PBC method has been utilized in cascaded unidirectional multilevel converters. This paper applies the PBC method to the current control loop and the overall DC bus voltage control loop. Meanwhile, considering that the classical PBC method regulates DC voltage with a steady-state error, the overall DC bus voltage is regulated via a combination of the PBC method and a PI controller to ensure zero-voltage tracking error. Moreover, the tolerance and robustness of the modified PBC method are verified by a theoretical analysis. Simulation results are furnished for assessing the correctness of the theoretical analysis, and the performance of the modified PBC method for three-phase cascaded unidirectional multilevel converters.

Keywords

Acknowledgement

This work was supported in part by the China Scholarship Council, Doctoral Research Startup Fund of Beijing Institute of Graphic Communication and the Youth Growth Foundation of Guizhou province KY [2019]155.

References

  1. Samajdar, D., Bhattacharya, T.: Capacitor voltage ripple optimization in modular multilevel converter using synchronous reference frame energy ripple controller. IEEE Trans Power Electron 37(7), 7883-7895 (2022) https://doi.org/10.1109/TPEL.2022.3150570
  2. Xiao, Q., Jin, Y., Jia, H., et al.: Modulated model predictive control for multilevel cascaded H-bridge converter-based static synchronous compensator. IEEE Trans Industr Electron 69(2), 1091-1102 (2021) https://doi.org/10.1109/TIE.2021.3056953
  3. Mello, J.P.R.A., Jacobina, C.B., da Silva, I.R.F.M.P.: Multilevel reduced controlled switches AC-DC power conversion cells. IEEE Trans Ind Appl 53(3), 2233-2244 (2017) https://doi.org/10.1109/TIA.2017.2655488
  4. Cheng, H., Kong, J., Jiang, J., Wang, C., Wang, P.: Control strategy for three-phase bridgeless rectifier under unbalanced grid conditions 2018. Piscataway, IEEE International Power Electronics and Application Conference and Exposition (PEAC) (2018)
  5. Cheng, H., Kong, J., Wang, P., Wang, C.: Hybrid control scheme for three-phase multilevel unidirectional rectifier under unbalanced input voltages. IEEE Access 7, 29989-30001 (2019) https://doi.org/10.1109/ACCESS.2019.2897799
  6. Rocha, N., da Costa, A.E.L., Jacobina, C.B.: Parallel of two unidirectional AC-DC-AC three-leg converters to improve power quality. IEEE Trans Power Electron 33(9), 7782-7794 (2018) https://doi.org/10.1109/TPEL.2017.2771464
  7. Wang, C., Zhuang, Y., Jiao, J., Zhang, H., Wang, C., Cheng, H.: Topologies and control strategies of cascaded bridgeless multilevel rectifiers. IEEE J Emerg Sel Top Power Electron 5(1), 432-444 (2017) https://doi.org/10.1109/JESTPE.2016.2626788
  8. Cheng, H., Kong, J., Wang, X., Wang, P., Chen, T., Wang, C.: Power factor adjustment and input current distortion mitigation for three-phase unidirectional rectifier. IET Power Electron 12(7), 1816-1824 (2019) https://doi.org/10.1049/iet-pel.2018.6233
  9. Khan, S.A., Guo, Y., Zhu, J.: Model predictive observer based control for single-phase asymmetrical T-Type AC/DC power converter. IEEE Trans Ind Appl 55(2), 2033-2044 (2019) https://doi.org/10.1109/TIA.2018.2877397
  10. Lee, J., Lee, K.: Predictive control of vienna rectifiers for PMSG systems. IEEE Trans Industr Electron 64(4), 2580-2591 (2017) https://doi.org/10.1109/TIE.2016.2644599
  11. Li, X., Sun, Y., Wang, H., Su, M., Huang, S.: A hybrid control scheme for three-phase vienna rectifiers. IEEE Trans Power Electron. 33(1), 629-640 (2018) https://doi.org/10.1109/TPEL.2017.2661382
  12. X. Yangxu, Z. Danhong, Z. Huaiun, W. Lianshun, Q. Yue and L. Zhiwen. 2018. Neural network- fuzzy adaptive PID controller based on VIENNA rectifier. Chinese Automation Congress (CAC), Xi'an, China, pp. 583-588
  13. Jia, Z., Cong, W., Hong, C., et al.: Research on modulation strategy and balance control for DC-link voltages in triple line-voltage cascaded VIENNA converter. Trans China Electrotech Soc 16(1), 3835-3844 (2018)
  14. Li, J., Lv, X., Zhao, B., Zhang, Y., Zhang, Q., Wang, J.: Research on passivity based control strategy of power conversion system used in the energy storage system. IET Power Electron 12(3), 392-399 (2019) https://doi.org/10.1049/iet-pel.2018.5620
  15. Cheng, H., Yang, D., Wang, C.: Research on the nonlinear control strategy of three-phase bridgeless rectifier under unbalanced grids. Electronics 10(24), 3090 (2021)
  16. Dell'Aquila, A., Liserre, M., Monopoli, V.G., Rotondo, P.: An energy-based control for an n-H-bridges multilevel active rectifier. IEEE Trans Industr Electron 52(3), 670-678 (2005) https://doi.org/10.1109/TIE.2005.843971
  17. Mehrasa, M., Adabi, M.E., Pouresmaeil, E., et al.: Passivity-based control technique for integration of DG resources into the power grid. Int J Electr Power Energy Syst 58, 281-290 (2014) https://doi.org/10.1016/j.ijepes.2014.01.034
  18. Hassan M A, Su C L, Chen F Z, et al. 2021. Adaptive passivity-based control of dc-dc boost power converter supplying constant power and constant voltage loads. IEEE Transactions on Industrial Electronics,
  19. Lee, T.-S.: Lagrangian modeling and passivity-based control of three-phase AC/DC voltage-source converters. IEEE Trans Industr Electron 51(4), 892-902 (2004) https://doi.org/10.1109/TIE.2004.831753
  20. Komurcugil, H.: Improved passivity-based control method and its robustness analysis for single-phase uninterruptible power supply inverters. IET Power Electron 8(8), 1558-1570 (2015) https://doi.org/10.1049/iet-pel.2014.0706