DOI QR코드

DOI QR Code

ON THE GREATEST COMMON DIVISOR OF BINOMIAL COEFFICIENTS

  • Sunben Chiu (School of Mathematical Sciences South China Normal University) ;
  • Pingzhi Yuan (School of Mathematical Sciences South China Normal University) ;
  • Tao Zhou (School of Mathematical Sciences South China Normal University)
  • 투고 : 2022.03.02
  • 심사 : 2023.04.21
  • 발행 : 2023.07.31

초록

Let n ⩾ 2 be an integer, we denote the smallest integer b such that gcd {(nk) : b < k < n - b} > 1 as b(n). For any prime p, we denote the highest exponent α such that pα | n as vp(n). In this paper, we partially answer a question asked by Hong in 2016. For a composite number n and a prime number p with p | n, let n = ampm + r, 0 ⩽ r < pm, 0 < am < p. Then we have $$v_p\(\text{gcd}\{\(n\\k\)\;:\;b(n)1\}\)=\{\array{1,&&a_m=1\text{ and }r=b(n),\\0,&&\text{otherwise.}}$$

키워드

과제정보

Supported by National Science Foundation of China (No. 12171163).

참고문헌

  1. J. Albree, The gcd of certain binomial coefficients, Math. Mag. 45 (1972), 259-261. https://doi.org/10.2307/2688616
  2. T. M. Apostol, Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, Springer, New York, 1976. https://doi.org/10.1007/978-1-4757-5579-4
  3. R. C. Baker, G. Harman, and J. Pintz, The difference between consecutive primes. II, Proc. London Math. Soc. (3) 83 (2001), no. 3, 532-562. https://doi.org/10.1112/plms/83.3.532
  4. S. Hong, The greatest common divisor of certain binomial coefficients, C. R. Math. Acad. Sci. Paris 354 (2016), no. 8, 756-761. https://doi.org/10.1016/j.crma.2016.06.001
  5. H. Joris, C. Oestreicher, and J. Steinig, The greatest common divisor of certain sets of binomial coefficients, J. Number Theory 21 (1985), no. 1, 101-119. https://doi.org/10.1016/0022-314X(85)90013-7
  6. G. Kaplan and D. Levy, GCD of truncated rows in Pascal's triangle, Integers 4 (2004), A14, 20 pp.
  7. N. I. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, second edition, Graduate Texts in Mathematics, 58, Springer, New York, 1984. https://doi.org/10.1007/978-1-4612-1112-9
  8. M. Krizek, F. Luca, and L. Somer, 17 lectures on Fermat numbers, CMS Books in Mathematics/Ouvrages de Mathematiques de la SMC, 9, Springer, New York, 2001. https://doi.org/10.1007/978-0-387-21850-2
  9. E. E. Kummer, Uber die Erganzungssatze zu den allgemeinen Reciprocitatsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146. https://doi.org/10.1515/crll.1852.44.
  10. C. McTague, The Cayley plane and string bordism, Geom. Topology 18 (2014), no. 4, 2045-2078. https://doi.org/10.2140/gt.2014.18.2045
  11. C. McTague, On the greatest common divisor of binomial coefficients, Amer. Math. Monthly 124 (2017), no. 4, 353-356, https://doi.org/10.4169/amer.math.monthly.124.4.353
  12. N. S. Mendelsohn, Divisors of binomial coefficients, Amer. Math. Monthly 78 (1971), no. 2, 201-202. https://doi.org/10.2307/2317643
  13. L. Panaitopol, Some of the properties of the sequence of powers of prime numbers, Rocky Mountain J. Math. 31 (2001), no. 4, 1407-1415. https://doi.org/10.1216/rmjm/1021249445
  14. B. Ram, Common Factors of ${\frac{n!}{n!(n-m)!}}$, (m = 1, 2, . . . , n - 1), J. Indian Math. Club 1 (1909), 39-43.
  15. C. Soul'e, Secant varieties and successive minima, J. Algebraic Geom. 13 (2004), no. 2, 323-341. https://doi.org/10.1090/S1056-3911-03-00351-5
  16. J. Xiao, P. Yuan, and X. Lin, The Greatest Common Divisor of Certain Set of Binomial Coeffcients, Math. Theory Appl. 42 (2022), no. 1, 85-91.