DOI QR코드

DOI QR Code

SEMI-SYMMETRIC STRUCTURE JACOBI OPERATOR FOR REAL HYPERSURFACES IN THE COMPLEX QUADRIC

  • Imsoon Jeong (Department of Mathematics Education Cheongju University) ;
  • Gyu Jong Kim (Department of Mathematics Education Woosuk University) ;
  • Changhwa Woo (Department of Applied Mathematics Pukyong National University)
  • 투고 : 2022.02.25
  • 심사 : 2023.04.24
  • 발행 : 2023.07.31

초록

In this paper, we introduce the notion of semi-symmetric structure Jacobi operator for Hopf real hypersufaces in the complex quadric Qm = SOm+2/SOmSO2. Next we prove that there does not exist any Hopf real hypersurface in the complex quadric Qm = SOm+2/SOmSO2 with semi-symmetric structure Jacobi operator. As a corollary, we also get a non-existence property of Hopf real hypersurfaces in the complex quadric Qm with either symmetric (parallel), or recurrent structure Jacobi operator.

키워드

과제정보

The first author was supported by grant Proj. No. NRF-2021-R1F1A1064192. The second author was supported by grant by Proj. No. NRF-2020-R1G1A1A-01003570. The third author was supported by grant Proj. No. NRF-2020-R1A2C1A-01101518.

참고문헌

  1. J. T. Cho and M. Kimura, Curvature of Hopf hypersurfaces in a complex space form, Results Math. 61 (2012), no. 1-2, 127-135. https://doi.org/10.1007/s00025-010-0080-y 
  2. A. De and T.-H. Loo, Pseudo parallel CR-submanifolds in a non-flat complex space form, Taiwanese J. Math. 18 (2014), no. 5, 1549-1562. https://doi.org/10.11650/tjm.18.2014.4034 
  3. A. De, T.-H. Loo, and C. Woo, Real hypersurfaces in complex Grassmannians of rank two with semi-parallel structure Jacobi operator, Rev. Un. Mat. Argentina 60 (2019), no. 2, 505-515. https://doi.org/10.33044/revuma.v60n2a15 
  4. U.-H. Ki, J. D. Perez, F. G. Santos, and Y. J. Suh, Real hypersurfaces in complex space forms with ξ-parallel Ricci tensor and structure Jacobi operator, J. Korean Math. Soc. 44 (2007), no. 2, 307-326. https://doi.org/10.4134/JKMS.2007.44.2.307 
  5. S. Klein, Totally geodesic submanifolds of the complex and the quaternionic 2-Grassmannians, Trans. Amer. Math. Soc. 361 (2009), no. 9, 4927-4967. https://doi.org/10.1090/S0002-9947-09-04699-6 
  6. S. Klein and Y. J. Suh, Contact real hypersurfaces in the complex hyperbolic quadric, Ann. Mat. Pura Appl. (4) 198 (2019), no. 4, 1481-1494. https://doi.org/10.1007/s10231-019-00827-y 
  7. H. Lee, J. D. Perez, and Y. J. Suh, Derivatives of normal Jacobi operator on real hypersurfaces in the complex quadric, Bull. Lond. Math. Soc. 52 (2020), no. 6, 1122-1133. https://doi.org/10.1112/blms.12386 
  8. H. Lee and Y. J. Suh, Commuting Jacobi operators on real hypersurfaces of type B in the complex quadric, Math. Phys. Anal. Geom. 23 (2020), no. 4, Paper No. 44, 21 pp. https://doi.org/10.1007/s11040-020-09370-2 
  9. H. Lee, Y. J. Suh, and C. Woo, A classification of Ricci semi-symmetric real hypersurfaces in the complex quadric, J. Geom. Phys. 164 (2021), Paper No. 104177, 15 pp. https://doi.org/10.1016/j.geomphys.2021.104177 
  10. R. Niebergall and P. J. Ryan, Semi-parallel and semi-symmetric real hypersurfaces in complex space forms, Kyungpook Math. J. 38 (1998), no. 1, 227-234. 
  11. M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364. https://doi.org/10.2307/1998631 
  12. J. D. Perez, Lie derivatives and structure Jacobi operator on real hypersurfaces in complex projective spaces, Differential Geom. Appl. 50 (2017), 1-10. https://doi.org/10.1016/j.difgeo.2016.10.004 
  13. J. D. Perez, Commutativity of torsion and normal Jacobi operators on real hypersurfaces in the complex quadric, Publ. Math. Debrecen 95 (2019), no. 1-2, 157-168. https://doi.org/10.5486/pmd.2019.8424 
  14. J. D. Perez, Some real hypersurfaces in complex and complex hyperbolic quadrics, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 2, 1709-1718. https://doi.org/10.1007/s40840-019-00769-x 
  15. J. D. Perez, D. H. Hwang, and Y. J. Suh, Hypersurfaces in complex Grassmannians whose geodesics are circles and straight lines, Houston J. Math. 46 (2020), no. 3, 681-693. 
  16. J. D. Perez and F. G. Santos, Real hypersurfaces in complex projective space whose structure Jacobi operator is cyclic-Ryan parallel, Kyungpook Math. J. 49 (2009), no. 2, 211-219. https://doi.org/10.5666/KMJ.2009.49.2.211 
  17. J. D. Perez and Y. J. Suh, Derivatives of the shape operator of real hypersurfaces in the complex quadric, Results Math. 73 (2018), no. 3, Paper No. 126, 10 pp. https://doi.org/10.1007/s00025-018-0888-4 
  18. H. Reckziegel, On the geometry of the complex quadric, in Geometry and topology of submanifolds, VIII (Brussels, 1995/Nordfjordeid, 1995), 302-315, World Sci. Publ., River Edge, NJ, 1996. 
  19. B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math. (2) 85 (1967), 246-266. https://doi.org/10.2307/1970441 
  20. Y. J. Suh, Real hypersurfaces in the complex quadric with Reeb parallel shape operator, Internat. J. Math. 25 (2014), no. 6, 1450059, 17 pp. https://doi.org/10.1142/S0129167X14500591 
  21. Y. J. Suh, Real hypersurfaces in the complex quadric with Reeb invariant shape operator, Differential Geom. Appl. 38 (2015), 10-21. https://doi.org/10.1016/j.difgeo.2014.11.003 
  22. Y. J. Suh, Real hypersurfaces in the complex quadric with parallel Ricci tensor, Adv. Math. 281 (2015), 886-905. https://doi.org/10.1016/j.aim.2015.05.012 
  23. Y. J. Suh, Real hypersurfaces in the complex quadric with parallel normal Jacobi operator, Math. Nachr. 290 (2017), no. 2-3, 442-451. https://doi.org/10.1002/mana.201500428 
  24. Y. J. Suh, Real hypersurfaces in the complex quadric with parallel structure Jacobi operator, Differential Geom. Appl. 51 (2017), 33-48. https://doi.org/10.1016/j.difgeo.2017.01.001 
  25. Y. J. Suh, Real hypersurfaces in the complex hyperbolic quadrics with isometric Reeb flow, Commun. Contemp. Math. 20 (2018), no. 2, 1750031, 20 pp. https://doi.org/10.1142/S0219199717500316 
  26. Y. J. Suh, Real hypersurfaces in the complex quadric whose structure Jacobi operator is of Codazzi type, Math. Nachr. 292 (2019), no. 6, 1375-1391. https://doi.org/10.1002/mana.201800184 
  27. Y. J. Suh and G. J. Kim, Real hypersurfaces in the complex quadric with Lie invariant structure Jacobi operator, Canad. Math. Bull. 63 (2020), no. 1, 204-221. https://doi.org/10.4153/s0008439519000080