ON THE GREATEST COMMON DIVISOR OF BINOMIAL COEFFICIENTS

Sunben Chiu, Pingzhi Yuan, and Tao Zhou

Abstract

Let $n \geqslant 2$ be an integer, we denote the smallest integer b such that $\operatorname{gcd}\left\{\binom{n}{k}: b<k<n-b\right\}>1$ as $b(n)$. For any prime p, we denote the highest exponent α such that $p^{\alpha} \mid n$ as $v_{p}(n)$. In this paper, we partially answer a question asked by Hong in 2016. For a composite number n and a prime number p with $p \mid n$, let $n=a_{m} p^{m}+r, 0 \leqslant r<p^{m}$, $0<a_{m}<p$. Then we have $v_{p}\left(\operatorname{gcd}\left\{\binom{n}{k}: b(n)<k<n-b(n),(n, k)>1\right\}\right)= \begin{cases}1, & a_{m}=1 \text { and } r=b(n), \\ 0, & \text { otherwise } .\end{cases}$

1. Introduction

Let n and k be nonnegative integers. The binomial coefficient $\binom{n}{k}$ is defined by $\binom{n}{k}:=\frac{n!}{k!(n-k)!}$ if $0 \leqslant k \leqslant n$, and $\binom{n}{k}:=0$ otherwise. For any finite set $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of integers, we denote the greatest common divisor of all the elements of S by $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ or gcd S. Since the problem of the greatest common divisor of binomial coefficients was first studied by Ram [14] in 1909, many mathematicians have made contributions to this topic. Ram proved that

$$
\operatorname{gcd}\left\{\binom{n}{k}: 0<k<n\right\}= \begin{cases}p, & \text { if } n=p^{m} \text { is a power of a prime } p \\ 1, & \text { otherwise }\end{cases}
$$

In 1985, Joris, Oestreicher and Steinig [5] gave an explicit formula for gcd $\left\{\begin{array}{l}n \\ k\end{array}\right)$: $r \leqslant k \leqslant s\}$ for any $0 \leqslant r \leqslant s \leqslant n$, but it is too complicated to be stated here.

Let p be a prime and n be a positive integer. We denote the highest exponent α such that $p^{\alpha} \mid n$ as $v_{p}(n)$, and $v_{p}(n)$ is called the p-adic valuation of n. We denote the sum of the digits of n in the p-adic as $\sigma_{p}(n)$. Mendelsohn [12] proved that $\operatorname{gcd}\left\{\binom{2 n}{2 k-1}: 1 \leqslant k \leqslant n\right\}=2^{1+v_{2}(n)}$. In 1972, Albree [1] generalized the result of Mendelsohn by showing that if p is a prime, then

[^0]$\operatorname{gcd}\left\{\binom{p n}{k}: 1 \leqslant k \leqslant p n, p \nmid k\right\}=p^{1+v_{p}(n)}$. McTague proved in [10] that
\[

v_{p}\left(\operatorname{gcd}\left\{\binom{2 n}{2 k}: 0<k<n\right\}\right)= $$
\begin{cases}1, & \text { if } 2 n=p^{i}+p^{j} \text { for some } 0 \leqslant i \leqslant j \\ 0, & \text { otherwise },\end{cases}
$$
\]

and showed in [11] that

$$
v_{p}\left(\operatorname{gcd}\left\{\binom{n}{q k}: 0<k<\frac{n}{q}\right\}\right)= \begin{cases}1, & \text { if } \sigma_{p}(n) \leqslant q, \\ 0, & \text { otherwise }\end{cases}
$$

for any integers n with $0<q<n$ and $p \equiv 1(\bmod q)$.
For $n \geqslant 2$, we denote by $b(n)$ the smallest integer b such that $\operatorname{gcd}\left\{\binom{n}{k}: b<\right.$ $k<n-b\}>1$. In 2004, Granville [15] showed that $b(n)=n-p^{m}$, where p^{m} is the largest prime power not greater than n, and Soulé [15] proved that $b(n) \leqslant \frac{n}{4}$.

In 2016, Hong [4] proved that

$$
\operatorname{gcd}\left\{\binom{m n}{k}: 1 \leqslant k \leqslant m n,(m, k)=1\right\}=m \prod_{\text {prime } p \mid(m, n)} p^{v_{p}(n)} .
$$

In addition, Hong asked the following interesting questions in 2016. And one of the formulas, F_{n}, was resolved by Xiao, Yuan and Lin [16] in 2022: Let p^{m} be the largest prime power not greater than n. Then $F_{n}=p$. In fact, in 2004, Kaplan and Levy [6] already gave an explicit formula of F_{n}.

Problem (Hong [4]). Let $n \geqslant 2$ be an integer. Find the explicit formula for

$$
\begin{gathered}
F_{n}:=\operatorname{gcd}\left\{\binom{n}{k}: b(n)<k<n-b(n)\right\}, \\
G_{n}:=\operatorname{gcd}\left\{\binom{n}{k}: b(n)<k<n-b(n),(n, k)=1\right\}
\end{gathered}
$$

and

$$
H_{n}:=\operatorname{gcd}\left\{\binom{n}{k}: b(n)<k<n-b(n),(n, k)>1\right\}
$$

respectively.
In 2001, Baker, Harman and Pintz [3] proved that there exists a prime number p in $\left[n-n^{0.525}, n\right]$ when n is large enough. Although the number of prime powers in a given interval must be no less than the number of primes, Panaitopol [13] showed us in the same year that the distributions of primes and prime powers are of the same order, i.e., $\pi(n) \sim \pi^{*}(n)$, where $\pi(n)$ is the number of primes not greater than n, and $\pi^{*}(n)$ is the number of prime powers not greater than n. Hence $b(n) \ll n^{0.525}$.

The main work of the present paper is to give partial conclusions related to G_{n} and H_{n}. We give an explicit formula for $v_{p}\left(G_{n}\right)$ when $p \nmid n$ and $v_{p}\left(H_{n}\right)$ when $p \mid n$. The main result of this paper is as follows.

Theorem 1.1. Let $n \geqslant 2$ and $n \neq 6$ be a positive integer, p be a prime with $p<n$ and $p \nmid n$. Put $n=a_{m} p^{m}+r, 0<r<p^{m}, 0<a_{m}<p$. We have

$$
v_{p}\left(G_{n}\right)= \begin{cases}1, & a_{m}=1 \text { and } r=b(n) \\ 0, & \text { otherwise }\end{cases}
$$

if one of the following two conditions holds.
(1) $b(n) \leqslant \sqrt{n}$;
(2) n is large enough.

Theorem 1.2. Let n be a composite number, p be a prime with $p \mid n$. Put $n=a_{m} p^{m}+r, 0 \leqslant r<p^{m}, 0<a_{m}<p$. We have

$$
v_{p}\left(H_{n}\right)= \begin{cases}1, & a_{m}=1 \text { and } r=b(n) \\ 0, & \text { otherwise }\end{cases}
$$

2. Preliminaries

In this section, we repeat some relevant lemmas from references without proofs, which are needed in the proof of Theorems 1.1 and 1.2, thus making our exposition self-contained.
Lemma 2.1 (Kummer [9, P116]). For any integers $0 \leqslant k \leqslant n$ and any prime $p, v_{p}\binom{n}{k}$ is equal to the number of carries when adding k to $n-k$ in base p. Equivalently, $v_{p}\binom{n}{k}$ is also equal to the number of borrows when subtracting k from n in base p.

Lemma 2.2 (Soulé [15, Equations (5) and (6)]). For any positive integer $n \geqslant 2$, we have $b(n) \leqslant \frac{n}{4}$ and $b(n) \ll n^{0.525}$.
Lemma 2.3 (Koblitz [7, Exercise 1.2.14]). Let n and k be integers with $0 \leqslant$ $k \leqslant n$, p be a prime. Then

$$
v_{p}\binom{n}{k}=\frac{\sigma_{p}(k)+\sigma_{p}(n-k)-\sigma_{p}(n)}{p-1} .
$$

Lemma 2.4 (Xiao, Yuan and Lin [16, Lemma 2.3]). Let $n>2$ and a be positive integers with $a<\frac{n}{2}$, p be a prime and $b(n, p):=n-p^{\left\lfloor\log _{p} n\right\rfloor}$. If $0 \leqslant b(n, p) \leqslant a$, then $\sigma_{p}(k)+\sigma_{p}(n-k) \geqslant p+\sigma_{p}(b(n, p))$ for every positive integers k with $a<k<n-a$.
Lemma 2.5 (The equivalent forms of the Prime Number Theorem, [2, Theorem 4.4]). Let x be a real number. The first Chebyshev function is given by

$$
\vartheta(x)=\sum_{\substack{p \leqslant x \\ p \text { is prime }}} \ln p .
$$

Then

$$
\lim _{x \rightarrow \infty} \frac{\vartheta(x)}{x}=1
$$

The following lemma is simple but necessary.
Lemma 2.6. Let $n \geqslant 2$ and $n \neq 6$ be a positive integer. Then there exists an integer k such that $b(n)<k<n-b(n)$ and $(n, k)=1$.

Proof. For $n=2$ or 4 , we have $b(2)=b(4)=0$, take $k=1$, then $b(n)<k<$ $n-b(n)$ and $(n, k)=1$.

If $n>2$ and $n \neq 4,6$, by Lemma 2.2, it suffices to find an integer k such that $\frac{n}{4}<k \leqslant \frac{n}{2}$ and $(n, k)=1$. We have

- For $n \equiv 1(\bmod 2)$, take $k=\frac{n-1}{2}$, then $(n, k)=1$ and $\frac{n}{4}<\frac{n-1}{2}<\frac{n}{2}$.
- For $n \equiv 2(\bmod 4)$ and $n \neq 6$, take $k=\frac{n}{2}-2$, then $(n, k)=1$ and $\frac{n}{4}<\frac{n}{2}-2<\frac{n}{2}$.
- For $n \equiv 0(\bmod 4)$ and $n \neq 4$, take $k=\frac{n}{2}-1$, then $(n, k)=1$ and $\frac{n}{4}<\frac{n}{2}-1<\frac{n}{2}$.
This completes the proof.

3. Proof of Theorem 1.1

Although $b(n) \ll n^{0.525}$, Panaitopol [13] showed that we cannot compress the upper bound of $b(n)$ lower because $\pi(n) \sim \pi^{*}(n)$. We have verified with the help of a computer that $b(n)<\sqrt{n}$ holds for $2 \leqslant n<10^{11}$. Next we give a proof of Theorem 1.1.

Proof of Theorem 1.1(1). We have $n=a_{m} p^{m}+r, 0<a_{m}<p, 0<r<p^{m}$ and $(n, p)=1$. We divide the proof into three cases.

CASE 1. $a_{m}>1$. Let $k=p^{m}$. Then $k<\frac{n}{2}$ and $(n, k)=1$. Since $n<p^{m+1}$, we have $k>n^{\frac{m}{m+1}} \geqslant n^{1 / 2} \geqslant b(n)$ and

$$
v_{p}\binom{n}{k}=v_{p}\binom{a_{m} p^{m}+r}{p^{m}}=0
$$

by Kummer's Theorem. Hence $v_{p}\left(G_{n}\right)=0$.
Case 2. $a_{m}=1$ and $r>b(n)$. Let $k=r$. Then $k<\frac{n}{2}$ and $(n, k)=1$. Now

$$
v_{p}\binom{n}{k}=v_{p}\binom{p^{m}+r}{r}=0,
$$

and $v_{p}\left(G_{n}\right)=0$ again.
Case 3. $a_{m}=1$ and $r=b(n)$. Then $n=p^{m}+b(n)$. By Lemmas 2.3 and 2.4 that

$$
\begin{aligned}
v_{p}\left(G_{n}\right) & =\min \left\{v_{p}\binom{n}{k}: b(n)<k<n-b(n),(n, k)=1\right\} \\
& =\min \left\{\frac{\sigma_{p}(k)+\sigma_{p}(n-k)-\sigma_{p}(n)}{p-1}: b(n)<k<n-b(n),(n, k)=1\right\} \\
& \geqslant \frac{p+\sigma_{p}(b(n))-\sigma_{p}(n)}{p-1}=\frac{p-1}{p-1}=1
\end{aligned}
$$

Therefore, it suffices to find a positive integer k such that $b(n)<k<n-b(n)$, $(n, k)=1$ and $v_{p}\binom{n}{k}=1$. We divide the process into three subcases.

SUBCASE 3.1. $m \geqslant 3$. Since $n<p^{m+1}$, we have $p^{m-1}>n^{\frac{m-1}{m+1}} \geqslant n^{2 / 4} \geqslant$ $b(n)$. Take $k=p^{m-1}$. Then we have

$$
v_{p}\binom{n}{k}=v_{p}\binom{p^{m}+b(n)}{p^{m-1}}=1 .
$$

Therefore $v_{p}\left(G_{n}\right)=1$ in this subcase.
Subcase 3.2. $m=2$. Then $n=p^{2}+r$. Since $r=b(n) \leqslant \sqrt{n}=\sqrt{p^{2}+r}$, we obtain $r \leqslant \frac{1}{2}\left(1+\sqrt{4 p^{2}+1}\right)<p+1$. Notice that $r \neq p$, hence $r<p$. Take $k=p$. Then we have

$$
v_{p}\binom{n}{k}=v_{p}\binom{p^{2}+b(n)}{p}=1
$$

and $v_{p}\left(G_{n}\right)=1$.
Subcase 3.3. $m=1$. Then $n=p+r, 0<r<p$. By Lemma 2.6, there exists an integer k with $b(n)=r<k<p=n-b(n)$ such that $(n, k)=1$ except for $n=6$. Hence

$$
v_{p}\binom{n}{k}=v_{p}\binom{p+r}{k}=1
$$

and $v_{p}\left(G_{n}\right)=1$ again.
Proof of Theorem 1.1(2). Let $n=a_{m} p^{m}+r, 0<a_{m}<p, 0<r<p^{m}$. We divide the proof into four cases.

CASE 1. $a_{m}>1$ and $m \geqslant 2$. Let $k=p^{m}$. Then $(n, k)=1$ and $k<\frac{n}{2}$. Since $n<p^{m+1}$, we have $k>n^{\frac{m}{m+1}} \geqslant n^{2 / 3}>n^{0.525} \gg b(n)$ and

$$
v_{p}\binom{n}{k}=v_{p}\binom{a_{m} p^{m}+r}{p^{m}}=0
$$

Hence $v_{p}\left(G_{n}\right)=0$.
Case 2. $a_{m}>1$ and $m=1$. Let $n=a p+r, 1<a<p, 0<r<p$. We divide this cases into two subcases.

Subcase 2.1. $a \leqslant p^{0.475}-1$. Then $p \geqslant[(a+1) p]^{0.525}>n^{0.525} \gg b(n)$. Take $k=p$. Then we have $(n, k)=1$ and $b(n)<k<\frac{n}{2}$. Now

$$
v_{p}\binom{n}{k}=v_{p}\binom{a p+r}{p}=0
$$

and $v_{p}\left(G_{n}\right)=0$.
SUBCASE 2.2. $a>p^{0.475}-1$. Since $b(n) \ll n^{0.525}<p^{1.05}$, we have $n-b(n)>$ $\left(p^{0.475}-1\right) p-b(n) \gg p^{1.475}-p^{1.05}-p$. By Lemma 2.5 ,

$$
\prod_{\substack{q \leqslant x \\ q \text { is prime }}} q \sim \exp (x)
$$

we have,

$$
\begin{aligned}
\prod_{p^{0.05}<q \leqslant p^{0.475}-p^{0.05}-1} q & =\prod_{q \leqslant p^{0.475}-p^{0.05}-1} q / \prod_{q \leqslant p^{0.05}} q \\
& \sim \exp \left(p^{0.475}-2 p^{0.05}-1\right) \\
& \gg p^{2}>n
\end{aligned}
$$

It follows that there exists a prime q with $(q, n)=1$ and $b(n) \ll p^{1.05}<q p \leqslant$ $p^{1.475}-p^{1.05}-p \ll n-b(n)$. Take $k=q p$. Then we have

$$
v_{p}\binom{n}{k}=v_{p}\binom{a p+r}{q p}=0
$$

and $v_{p}\left(G_{n}\right)=0$ again.
CASE 3. $a_{m}=1$ and $r>b(n)$. Let $k=r$. Then $r<p^{m}$ and $(n, k)=1$.
Now

$$
v_{p}\binom{n}{k}=v_{p}\binom{p^{m}+r}{r}=0
$$

and $v_{p}\left(G_{n}\right)=0$ again.
CASE 4. $a_{m}=1$ and $r=b(n)$. Then $n=p^{m}+b(n), b(n)<p^{m}$ and $v_{p}\left(G_{n}\right) \geqslant 1$ by Lemmas 2.3 and 2.4. We divide this cases into two subcases.

Subcase 4.1. $m \geqslant 3$. Take $k=p^{m-1}$. Then $n<2 p^{m}$,

$$
k>\left(\frac{n}{2}\right)^{\frac{m-1}{m}} \geqslant\left(\frac{n}{2}\right)^{2 / 3} \gg n^{0.525} \gg b(n)
$$

Since

$$
v_{p}\binom{n}{k}=v_{p}\binom{p^{m}+b(n)}{p^{m-1}}=1
$$

by Kummer's Theorem, we have $v_{p}\left(G_{n}\right)=1$.
SUBCASE 4.2. $m=2$. $n=p^{2}+b(n)$. Since $b(n) \ll n^{0.525}, p=\sqrt{n-b(n)} \sim$ \sqrt{n}, we have

$$
\prod_{n^{0.025}<q<p} q=\prod_{q \leqslant p-1} q / \prod_{q \leqslant n^{0.025}} q \sim \exp \left(n^{0.5}-n^{0.025}-1\right) \gg n
$$

It follows that there exist a prime q with $(q, n)=1$ and $n^{0.025}<q<p$. Take $k=q p$. Then we have

$$
v_{p}\binom{n}{k}=v_{p}\binom{p^{2}+b(n)}{q p}=1
$$

Subcase 4.3. $m=1$. Then there exists an integer k with $b(n)=r<k<$ $p=n-b(n)$ such that $(n, k)=1$ by Lemma 2.6. Hence

$$
v_{p}\binom{n}{k}=v_{p}\binom{p+r}{k}=1
$$

and $v_{p}\left(G_{n}\right)=1$.

4. Proof of Theorem 1.2

In this section, we will prove Theorem 1.2.
Proof of Theorem 1.2. Let $n=a_{m} p^{m}+r, 0<a_{m}<p, 0 \leqslant r<p^{m}$. We first consider the case when $m \geqslant 2$. We divide the proof into three cases.

CASE 1. $a_{m}>1$. Let $s=\left\lfloor\frac{a_{m}}{2}\right\rfloor \geqslant 1$. Then $2 s \leqslant a_{m} \leqslant 2 s+1$, and hence $2 s p^{m} \leqslant n<(2 s+2) p^{m}$. Take $k=s p^{m}$. Then $\frac{n}{2} \geqslant k=s p^{m}>\frac{s n}{2 s+2} \geqslant \frac{n}{4} \geqslant b(n)$ by Lemma 2.2. Thus

$$
v_{p}\binom{n}{k}=v_{p}\binom{a_{m} p^{m}+r}{s p^{m}}=0
$$

and $v_{p}\left(H_{n}\right)=0$.
CASE 2. $a_{m}=1$ and $r>b(n)$. Let $k=r$. Then $k<\frac{n}{2}$ and $(n, k) \geqslant p$. Now

$$
v_{p}\binom{n}{k}=v_{p}\binom{p^{m}+r}{r}=0,
$$

and $v_{p}\left(H_{n}\right)=0$ again.
Case 3. $a_{m}=1$ and $r=b(n)$. Then $v_{p}\left(H_{n}\right) \geqslant 1$ by Lemmas 2.3 and 2.4. Since $n=p^{m}+b(n) \leqslant p^{m}+\frac{n}{4}$, we have $\frac{n}{4} \leqslant \frac{p^{m}}{3}$. Take $k=(p-1) p^{m-1}$. Then $b(n) \leqslant \frac{p^{m}}{3}<k<p^{m}=n-b(n)$. Now

$$
v_{p}\binom{n}{k}=v_{p}\left(\begin{array}{cr}
p^{m} & +b(n) \\
(p-1) p^{m-1}
\end{array}\right)=1
$$

and $v_{p}\left(H_{n}\right)=1$.
Next, we consider the case when $m=1$. Let $n=a p+r, 0<a<p$, $0 \leqslant r<p$. Since $p \mid r$, we have $r=0$ and $n=a p$. If $a=1$, then $n=p$ is a prime, there is no integer k with $b(n)<k<n-b(n)$ and $(n, k)>1$. If $a>2$, then $\frac{a}{4}+1<\frac{3}{4} a$, thus there exists an integer s such that $\frac{a}{4}<s<\frac{3}{4} a$. If $a=2$, we can take $s=1$. Let $k=s p$. Then $b(n) \leqslant \frac{n}{4}<k<\frac{3}{4} n \leqslant n-b(n)$. We have

$$
v_{p}\binom{n}{k}=v_{p}\binom{a p}{s p}=0
$$

and $v_{p}\left(H_{n}\right)=0$.
This completes the proof.

5. Examples and remarks

In this section, we will point out the difficulties of $v_{p}\left(G_{n}\right)$ when $p \mid n$ and $v_{p}\left(H_{n}\right)$ when $p \nmid n$.

For the prime $p \mid n$, if $b(n)=0$, since $(n, k)=1$, then

$$
v_{p}\binom{n}{k}=v_{p}\left(\frac{n}{k}\binom{n-1}{k-1}\right)=v_{p}(n)+v_{p}\binom{n-1}{k-1} \geqslant v_{p}(n) .
$$

Notice that $v_{p}\binom{n}{1}=v_{p}(n)$, we have $v_{p}\left(G_{n}\right)=v_{p}(n)$.

If $b(n)>0$, we have $b(n-1)=b(n)-1$. Because

$$
v_{p}\left(G_{n}\right)=v_{p}(n)+\min \left\{v_{p}\binom{n-1}{k-1}: b(n)<k<n-b(n),(n, k)=1\right\}
$$

let $n^{\prime}=n-1, k^{\prime}=k-1$, and then

$$
\begin{aligned}
& \min \left\{v_{p}\binom{n-1}{k-1}: b(n)<k<n-b(n),(n, k)=1\right\} \\
= & \min \left\{v_{p}\binom{n^{\prime}}{k^{\prime}}: b\left(n^{\prime}\right)<k^{\prime}<n^{\prime}-b\left(n^{\prime}\right)-1,\left(n^{\prime}+1, k^{\prime}+1\right)=1\right\} \\
= & \min \left\{v_{p}\binom{n^{\prime}}{k^{\prime}}: b\left(n^{\prime}\right)<k^{\prime}<n^{\prime}-b\left(n^{\prime}\right),\left(n^{\prime}+1, k^{\prime}+1\right)=1\right\} .
\end{aligned}
$$

Hence, it is necessary to find the explicit formula for

$$
\begin{equation*}
\operatorname{gcd}\left\{\binom{n}{k}: b(n)<k<n-b(n),(n+1, k+1)=1\right\} . \tag{1}
\end{equation*}
$$

Although the format of Equation (1) is similar to G_{n}, it is much more complicated than G_{n}. And Lemma 2.6 pointing out the coprime integer probably won't help in this case.
Example 5.1. It is easy to check that $v_{3}\left(G_{18}\right)=v_{3}\binom{18}{7}=2$ and $v_{2}\left(G_{18}\right)=$ $v_{2}\binom{18}{5}=3$, where $7=\frac{18}{2}-2$ is coprime to 18 by Lemma 2.6 but $v_{2}\binom{18}{7}=4$.

That means the minimum value of $v_{2}\binom{18}{k}$ is obtained at $k=5$, not at $k=7$.
For the prime $p \nmid n, v_{p}\left(H_{n}\right)$ is not easy to determine. The following proposition indicates that $v_{2}\left(H_{n}\right)$ is determined by the minimum prime factor of n when n is of the form $n=2^{a}+1$.

Proposition 5.2. Let a be a positive integer and $n=2^{a}+1$ be a composite. Then $v_{2}\left(H_{n}\right)=\left\lfloor\log _{2} p_{0}\right\rfloor+1$, where p_{0} is the minimum prime factor of n.

Proof. Let $p_{0}=2^{\alpha_{1}}+\cdots+2^{\alpha_{s}}, \alpha_{1}>\cdots>\alpha_{s}=0, s>1$. For any integer k with $b(n)=1<k<n-1=n-b(n)$ and $(n, k)>1$, let $k=2^{e} k^{\prime}$, where $e \geqslant 0$ and k^{\prime} be an odd. Hence there exists a prime $p \mid n$ such that $p \mid k^{\prime}$. Suppose that $k^{\prime}=2^{\beta_{1}}+\cdots+2^{\beta_{r}}, \beta_{1}>\cdots>\beta_{r}=0$, thus $\beta_{1}=\left\lfloor\log _{2} k^{\prime}\right\rfloor \geqslant\left\lfloor\log _{2} p\right\rfloor \geqslant$ $\left\lfloor\log _{2} p_{0}\right\rfloor=\alpha_{1}$. We divide the proof into two cases.

CASE 1. k is even, i.e., $e \geqslant 1$. Let $k_{0}=2^{a-\alpha_{1}-1} p_{0}=2^{a-1}+\cdots+2^{a-1+\alpha_{s}-\alpha_{1}}$. Then
$v_{2}\binom{n}{k_{0}}=v_{2}\left(\begin{array}{cc}2^{a} & +1 \\ & 2^{a-1}+\cdots+2^{a-1+\alpha_{s}-\alpha_{1}}\end{array}\right)=a-\left(a-1+\alpha_{s}-\alpha_{1}\right)=\alpha_{1}+1$.
Since $e+\beta_{1} \leqslant a-1$, we have

$$
v_{2}\binom{n}{k}=v_{2}\left(\begin{array}{cc}
2^{a} & +1 \\
& 2^{\beta_{1}+e}+\cdots+2^{\beta_{r}+e}
\end{array}\right)=a-e \geqslant \beta_{1}+1 \geqslant \alpha_{1}+1 .
$$

Case 2. k is odd, i.e., $e=0$. Now $n-k$ is even and then $v_{2}\binom{n}{k}=v_{2}\binom{n}{n-k} \geqslant$ $\alpha_{1}+1$ by Case 1 .

Therefore, $v_{2}\left(H_{n}\right)=\alpha_{1}+1=\left\lfloor\log _{2} p_{0}\right\rfloor+1$. This completes the proof.
Specially, let $a=2^{t}$, i.e., n is a Fermat number. Although we know the prime factors of n are of the form $d \equiv 1\left(\bmod 2^{t+2}\right)$ [8, p. 59], the specific form of the minimum prime factor of n has not yet been determined. Hence we just obtain $v_{2}\left(H_{n}\right) \geqslant t+3$.

In addition, even if the degree of p is 1 , we still cannot effectively determine $v_{p}\left(H_{n}\right)$.
Example 5.3. Let p be a prime and $n=2 p+1$ be a composite. Then $v_{p}\binom{n}{k}=1$ for all k satisfying $(n, k)>1$.

Example 5.4. Let $p>5$ be a prime, $n=6 p+5$ be a composite. By Kummer's Theorem, we have $v_{p}\binom{n}{k}=0$ if and only if $k=a p+r, 0 \leqslant a \leqslant 6,0 \leqslant r \leqslant 5$ with $0<k<n$. A trivial verification shows that $(n, k)=1,7,13$ or 19 for all $k=a p+r, 0 \leqslant a \leqslant 6,0 \leqslant r \leqslant 5$ with $0<k<n$. Hence

$$
v_{p}\left(H_{n}\right)= \begin{cases}1, & \text { if }(n, 7 \times 13 \times 19)=1 \\ 0, & \text { if }(n, 7 \times 13 \times 19)>1\end{cases}
$$

In fact, if $(n, 7 \times 13 \times 19)=1$, then $(n, k)=1$ for all $k=a p+r, 0 \leqslant a \leqslant 6$, $0 \leqslant r \leqslant 5$ with $0<k<n$. Thus $v_{p}\left(H_{n}\right)=1$. If one of 7,13 and 19 divides n, let $k=p+2, p+3$ and $p+4$, respectively. Thus we have $(n, k)>1$ and $v_{p}\left(H_{n}\right)=0$.

References

[1] J. Albree, The gcd of certain binomial coefficients, Math. Mag. 45 (1972), 259-261. https://doi.org/10.2307/2688616
[2] T. M. Apostol, Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, Springer, New York, 1976. https://doi.org/10.1007/978-1-4757-5579-4
[3] R. C. Baker, G. Harman, and J. Pintz, The difference between consecutive primes. II, Proc. London Math. Soc. (3) 83 (2001), no. 3, 532-562. https://doi.org/10.1112/ plms/83.3.532
[4] S. Hong, The greatest common divisor of certain binomial coefficients, C. R. Math. Acad. Sci. Paris 354 (2016), no. 8, 756-761. https://doi.org/10.1016/j.crma. 2016. 06.001
[5] H. Joris, C. Oestreicher, and J. Steinig, The greatest common divisor of certain sets of binomial coefficients, J. Number Theory 21 (1985), no. 1, 101-119. https://doi.org/ 10.1016/0022-314X(85) 90013-7
[6] G. Kaplan and D. Levy, GCD of truncated rows in Pascal's triangle, Integers 4 (2004), A14, 20 pp.
[7] N. I. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, second edition, Graduate Texts in Mathematics, 58, Springer, New York, 1984. https://doi.org/10. 1007/978-1-4612-1112-9
[8] M. Křížek, F. Luca, and L. Somer, 17 lectures on Fermat numbers, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 9, Springer, New York, 2001. https://doi.org/10.1007/978-0-387-21850-2
[9] E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146. https://doi.org/10.1515/crll.1852.44.93
[10] C. McTague, The Cayley plane and string bordism, Geom. Topology 18 (2014), no. 4, 2045-2078. https://doi.org/10.2140/gt.2014.18.2045
[11] C. McTague, On the greatest common divisor of binomial coefficients, Amer. Math. Monthly 124 (2017), no. 4, 353-356, https://doi.org/10.4169/amer.math.monthly. 124.4 .353
[12] N. S. Mendelsohn, Divisors of binomial coefficients, Amer. Math. Monthly 78 (1971), no. 2, 201-202. https://doi.org/10.2307/2317643
[13] L. Panaitopol, Some of the properties of the sequence of powers of prime numbers, Rocky Mountain J. Math. 31 (2001), no. 4, 1407-1415. https://doi.org/10.1216/rmjm/ 1021249445
[14] B. Ram, Common Factors of $\frac{n!}{m!(n-m)!},(m=1,2, \ldots, n-1)$, J. Indian Math. Club 1 (1909), 39-43.
[15] C. Soulé, Secant varieties and successive minima, J. Algebraic Geom. 13 (2004), no. 2, 323-341. https://doi.org/10.1090/S1056-3911-03-00351-5
[16] J. Xiao, P. Yuan, and X. Lin, The Greatest Common Divisor of Certain Set of Binomial Coeffcients, Math. Theory Appl. 42 (2022), no. 1, 85-91.

Sunben Chiu
School of Mathematical Sciences
South China Normal University
Guangzhou 510631, P. R. China
Email address: zcb@m.scnu.edu.cn
Pingzhi Yuan
School of Mathematical Sciences
South China Normal University
Guangzhou 510631, P. R. China
Email address: yuanpz@scnu.edu.cn

Tao Zhou

School of Mathematical Sciences
South China Normal University
Guangzhou 510631, P. R. China
Email address: taozhou.siu@m.scnu.edu.cn

[^0]: Received March 2, 2022; Revised December 22, 2022; Accepted April 21, 2023.
 2020 Mathematics Subject Classification. Primary 05A10, 11A05; Secondary 11D88, 11N05, 11A41.

 Key words and phrases. Binomial coefficient, greatest common divisor, p-adic valuation. Supported by National Science Foundation of China (No. 12171163).

