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ON THE GREATEST COMMON DIVISOR OF BINOMIAL
COEFFICIENTS

SUNBEN CHIU, PINGZHI YUAN, AND TAO ZHOU

ABSTRACT. Let n > 2 be an integer, we denote the smallest integer b such
that ged {(Z) :b<k<n-—b} >1as b(n). For any prime p, we denote
the highest exponent a such that p® | n as vp(n). In this paper, we par-
tially answer a question asked by Hong in 2016. For a composite number
n and a prime number p with p | n, let n = amp™ +7r, 0 < r < p™,
0 < am < p. Then we have

n 1, am =1and r =b(n),
vp<gcd {<k) :b(n) <k <n-=>b(n), (nk)> 1}) = {

0, otherwise.

1. Introduction

Let n and k be nonnegative integers. The binomial coefficient (Z) is defined

by (3) = ﬁik), if 0 < k < n, and (}) := 0 otherwise. For any finite set
S ={a1,as,...,a,} of integers, we denote the greatest common divisor of all
the elements of S by (a1, aq,...,a,) or gcd S. Since the problem of the greatest
common divisor of binomial coeflicients was first studied by Ram [14] in 1909,

many mathematicians have made contributions to this topic. Ram proved that

n p, if n=p™ is a power of a prime p,
cd 0<k<ny =
& { (k) } 1, otherwise.

In 1985, Joris, Oestreicher and Steinig [5] gave an explicit formula for ged { (Z) :
r < k < s} forany 0 < r < s < n, but it is too complicated to be stated here.

Let p be a prime and n be a positive integer. We denote the highest exponent
a such that p* | n as vp(n), and v,(n) is called the p-adic valuation of n.
We denote the sum of the digits of n in the p-adic as o,(n). Mendelsohn
[12] proved that ged {(,7",) : 1 < k < n} = 2!7%2() In 1972, Albree [1]
generalized the result of Mendelsohn by showing that if p is a prime, then

Received March 2, 2022; Revised December 22, 2022; Accepted April 21, 2023.

2020 Mathematics Subject Classification. Primary 05A10, 11A05; Secondary 11D8&8,
11NO05, 11A41.

Key words and phrases. Binomial coefficient, greatest common divisor, p-adic valuation.

Supported by National Science Foundation of China (No. 12171163).

(©2023 Korean Mathematical Society

863



864 S. CHIU, P. YUAN, AND T. ZHOU

gcd{(pk”) :1<k<pn, pt k} = p'*tv» (") McTague proved in [10] that

oy (ged 2n 0<kenl) 1, if2n:.pi+pjforsome0<i<j,
2k 0, otherwise,

and showed in [11] that

1, if < q,
vplgedd (") io<k<Zt)={" lap(n? I
qk q 0, otherwise,

for any integers n with 0 < ¢ <n and p =1 (mod q).

For n > 2, we denote by b(n) the smallest integer b such that ged {(}) : b <
k < n—>b} > 1. In 2004, Granville [15] showed that b(n) = n — p™, where
p™ is the largest prime power not greater than n, and Soulé [15] proved that
b(n) < 2.

In 2016, Hong [4] proved that

mn . _ _ vp (1)
gcd{(k).lékgmn, (m,k)—l}—m H P :

prime p|(m,n)

In addition, Hong asked the following interesting questions in 2016. And one
of the formulas, F,,, was resolved by Xiao, Yuan and Lin [16] in 2022: Let p™
be the largest prime power not greater than n. Then F,, = p. In fact, in 2004,
Kaplan and Levy [6] already gave an explicit formula of F,.

Problem (Hong [4]). Let n > 2 be an integer. Find the explicit formula for

o) o <t

G, —gcd{<k> b(n) < k <n—b(n), (n,k):l}

_gcd{< > b(n) < k <n—b(n), (n,k)>1},

In 2001, Baker, Harman and Pintz [3] proved that there exists a prime
number p in [n — n%%25 n] when n is large enough. Although the number of
prime powers in a given interval must be no less than the number of primes,
Panaitopol [13] showed us in the same year that the distributions of primes
and prime powers are of the same order, i.e., 7(n) ~ 7*(n), where 7(n) is the
number of primes not greater than n, and 7*(n) is the number of prime powers
not greater than n. Hence b(n) < n%525,

The main work of the present paper is to give partial conclusions related to
G, and H,. We give an explicit formula for v,(G,,) when p { n and v,(H,)
when p | n. The main result of this paper is as follows.

3
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respectively.
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Theorem 1.1. Let n > 2 and n # 6 be a positive integer, p be a prime with
p<nandpin. Putn=a,pm™+r, 0<r<p™, 0<a, <p. Wehave

vp(Gr) = {

if one of the following two conditions holds.

(1) b(n) < Vi

(2) n is large enough.

1, am=1 andr="0b(n),

0, otherwise,

Theorem 1.2. Let n be a composite number, p be a prime with p | n. Put
n=app™+7r, 0<r<p”, 0<ay, <p. We have

1, am=1andr="0b(n),

0, otherwise.

2. Preliminaries

In this section, we repeat some relevant lemmas from references without
proofs, which are needed in the proof of Theorems 1.1 and 1.2, thus making
our exposition self-contained.

Lemma 2.1 (Kummer [9, P116]). For any integers 0 < k < n and any prime

D, Up (Z) 18 equal to the number of carries when adding k to n — k in base p.

Equivalently, v, (Z) s also equal to the number of borrows when subtracting k

from n in base p.

Lemma 2.2 (Soulé [15, Equations (5) and (6)]). For any positive integer n > 2,
we have b(n) < 2 and b(n) < n°5%.

Lemma 2.3 (Koblitz [7, Exercise 1.2.14]). Let n and k be integers with 0 <
k <n, p be aprime. Then

(7 _ 2k) + oy = E) ~ oy (n)

P\E) p—1 ’
Lemma 2.4 (Xiao, Yuan and Lin [16, Lemma 2.3]). Let n > 2 and a be
positive integers with a < %, p be a prime and b(n,p) := n — pllogy ) If
0 < b(n,p) < a, then o,(k) + op(n — k) = p+ op(b(n,p)) for every positive
integers k with a < k <n — a.

Lemma 2.5 (The equivalent forms of the Prime Number Theorem, [2, Theorem
4.4]). Let x be a real number. The first Chebyshev function is given by

Ha) = Z In p.

PSZT
p is prime

Then
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The following lemma is simple but necessary.

Lemma 2.6. Let n > 2 and n # 6 be a positive integer. Then there exists an
integer k such that b(n) < k <n —b(n) and (n,k) = 1.

Proof. For n = 2 or 4, we have b(2) = b(4) = 0, take k = 1, then b(n) < k <
n —b(n) and (n,k) = 1.
If n > 2 and n # 4, 6, by Lemma 2.2, it suffices to find an integer k such
that & <k < § and (n,k) = 1. We have
For n =1 (mod 2), take k = 271, then (n,k) =1and 2 < 2531 < 2.
For n = 2 (mod 4) and n # 6, take k = § — 2, then (n,k) = 1 and
1<§5—-2<3.
e For n = 0 (mod 4) and n # 4, take k = § — 1, then (n,k) = 1 and
<2 —1<?2.
1S 2 2
This completes the proof. (I

3. Proof of Theorem 1.1

Although b(n) < n%525, Panaitopol [13] showed that we cannot compress
the upper bound of b(n) lower because w(n) ~ 7*(n). We have verified with
the help of a computer that b(n) < v/n holds for 2 < n < 10!, Next we give a
proof of Theorem 1.1.

Proof of Theorem 1.1(1). We have n = apmp™ + 7, 0 < apym < p, 0 < r < p™
and (n,p) = 1. We divide the proof into three cases.

CASE 1. a,, > 1. Let k = p™. Then k < % and (n,k) = 1. Since n < p™*1,
we have k > nmit > nl/2 > b(n) and

n amp™ + 1
Up 3 = o =

by Kummer’s Theorem. Hence v,(G,) = 0.
CASE 2. a, = 1 and r > b(n). Let k =r. Then k < § and (n,k) = 1. Now

n p"+r
Upl ) = o) = 0,
and v, (Gp) = 0 again.

CASE 3. ay, =1 and 7 = b(n). Then n = p™ + b(n). By Lemmas 2.3 and
2.4 that

v,(Gy) = min {v,, (Z) :b(n) <k <n—bn), (nk)= 1}

:mm{aﬂm+aﬂn—ﬂ—adm
p—1
2P+%®W»—%W)_p—1_

p—1 p—1

:b(n) <k <n—">bn), (n,k)= 1}

1.
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Therefore, it suffices to find a positive integer k such that b(n) < k < n —b(n),
(n,k) =1 and v,(}) = 1. We divide the process into three subcases.
m—1

SUBCASE 3.1. m > 3. Since n < p™*t!, we have p”~! > pm+t > p2/4 >
b(n). Take k = p™~1. Then we have

o)l )

Therefore v,(G,,) = 1 in this subcase.
SUBCASE 3.2. m = 2. Then n = p? +r. Since r = b(n) < \/n = \/p? +r,
we obtain r < %(1 +\/4p? + 1) < p+ 1. Notice that r # p, hence r < p. Take

k = p. Then we have
2
n p* +0b(n)
Up (k) = vp( » =1
and v, (Gp) = 1.
SUBCASE 3.3. m =1. Thenn =p+r, 0 <r < p. By Lemma 2.6, there

exists an integer k with b(n) = r < k < p = n — b(n) such that (n,k) =1
except for n = 6. Hence

ol = (73 =

and v,(Gp) = 1 again. O

Proof of Theorem 1.1(2). Let n = apmp™ + 7, 0 < ap, < p, 0 < r < p™. We
divide the proof into four cases.

CAsE 1. a, > 1and m > 2. Let k = p™. Then (n,k) =1 and k < §. Since
n < p™tl we have k > nmit > n2/3 > n%52% > b(n) and

ny amp™ + 1\
Vp w) = Up om =0.
Hence v,(G,) = 0.

CASE 2. @y >1land m=1. Let n=ap+r, 1 <a<p, 0<r<p We
divide this cases into two subcases.

SUBCASE 2.1. a < p%47 — 1. Then p > [(a + 1)p|®5?° > n0525 > b(n).
Take k = p. Then we have (n,k) =1 and b(n) < k < 5. Now

n ap+r
Upl ) = U » =0
and v, (Gp) = 0.

SUBCASE 2.2. a > p®47 —1. Since b(n) < n°5% < p!-%5 we have n—b(n) >
(P47 — 1)p — b(n) > p*47 — pt% — p. By Lemma 2.5,

H q ~ exp(z),

q<zT
q is prime
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we have,

H 7= H q Hq

p0.05<q<p0.4757p0.0571 qu0.4757p0.0571 qu0.0S
0.475 0.05
~ exp (p —2p - 1)
2
>p° >n.

It follows that there exists a prime ¢ with (¢,n) = 1 and b(n) < p'-% < ¢gp <
pl 4™ — pl9 <« n —b(n). Take k = gp. Then we have

'Up <n> Up < > 0
a‘Ild UP(G ’I’L) 0 agai .

CASE 3. a,, = 1 and r > b(n). Let k = r. Then r < p™ and (n,k) = 1.

Now
n P4
Vp p) = Up o) = 0,
and vp(Gr) = 0 again.

CASE 4. ap, = 1 and r = b(n). Then n = p™ + b(n), b(n) < p™ and
vp(Gy) = 1 by Lemmas 2.3 and 2.4. We divide this cases into two subcases.
SUBCASE 4.1. m > 3. Take k = p™~'. Then n < 2p™,

k> (g)mT_l > (g)w > n%9% > b(n).

o)l )

by Kummer’s Theorem, we have v,(G,) = 1.
SUBCASE 4.2. m = 2. n = p? +b(n). Since b(n) < n®5% p=/n—b(n) ~
V/n, we have

II «=1I ¢« I a~ew(n®® —n®% —1)>n.

n0-025 <g<p q<p—1 q<n0-025

Since

It follows that there exist a prime q with (¢,n) = 1 and n%%%° < ¢ < p. Take

k = gp. Then we have
2
n p* + b(n)
U” (k) Up ( ap

SUBCASE 4.3. m = 1. Then there exists an integer k with b(n) =r < k <
p =mn — b(n) such that (n, k) = 1 by Lemma 2.6. Hence

w(y) =u(") =

and v, (Gp) = 1. O
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4. Proof of Theorem 1.2

In this section, we will prove Theorem 1.2.

Proof of Theorem 1.2. Let n = app™ + 71,0 < ayp, < p, 0 < r < p™. We first
consider the case when m > 2. We divide the proof into three cases.

CaAsSE 1. a,, > 1. Let s = L%J > 1. Then 2s < a,, < 2s+ 1, and hence
2sp™ < < (25+2)p™. Take k = sp™. Then § > k = sp™ > 575 > 4 > b(n)

2s5+2
by Lemma 2.2. Thus
v ") = @mp™ 7 =0
p k - Yp Spm -
and v, (H,) = 0.
CASE 2. a,, = 1 and r > b(n). Let k = r. Then k < § and (n,k) > p. Now

n\ Py 0
’Up k == Up r — Y%
and v, (H,) = 0 again.

CASE 3. a,, =1 and 7 = b(n). Then v,(H,) > 1 by Lemmas 2.3 and 2.4.
Since n = p™ +b(n) < p™ + %, we have § < % Take k = (p— 1)p™~1. Then
b(n) < %m <k <p™=mn->b(n). Now

v,, (Z) o (P’" (r - inﬁz) -
and v, (H,) = 1.

Next, we consider the case when m = 1. Let n = ap+1r, 0 < a < p,
0<r<p. Sincep|r, wehave r =0and n =ap. If a =1, then n =pisa
prime, there is no integer k with b(n) < k <n —b(n) and (n,k) > 1. If a > 2,
then §+1 < %a, thus there exists an integer s such that 7 < s < %a. Ifa=2,
we can take s = 1. Let k = sp. Then b(n) < 2 <k < 3n < n — b(n). We have

n\ ap\ _
Up k =Up sp - Y
and v,(H,) = 0.

This completes the proof. O

5. Examples and remarks

In this section, we will point out the difficulties of v,(G,) when p | n and
vp(Hy) when p{n.
For the prime p | n, if b(n) = 0, since (n, k) = 1, then

w(}) =u(F(r21)) =+l ) = w.

Notice that v, (") = vp(n), we have v,(Gy,) = vp(n).
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If b(n) > 0, we have b(n — 1) = b(n) — 1. Because
n—1

0p(G) = v,(n) + min {up<k B 1) b(n) < k <n—bn), (n,k)= 1},

let n”’ =n—1,k =k —1, and then
-1
min {Up (Z 1) :b(n) <k <n—>bn), (nk)= 1}
!
= min {vp <Z’> cb(n) <k <n'—b(n)—1, (0 +1,K+1)= 1}

/
= min {UP<Z/> :b(n’) <k <n — b(n’)7 (n/ + l,k’—|— 1) = 1}.

Hence, it is necessary to find the explicit formula for

(1) gcd{<z> :b(n) < k < n—bn), (n+1,k+1)—1}.

Although the format of Equation (1) is similar to G, it is much more com-
plicated than G,. And Lemma 2.6 pointing out the coprime integer probably
won’t help in this case.

Example 5.1. It is easy to check that v3(Gis) = vs (178) = 2 and v2(G1s) =
Vg (158) = 3, where 7 = % — 2 is coprime to 18 by Lemma 2.6 but vg (178) =4.
That means the minimum value of v (1k8) is obtained at k = 5, not at k = 7.
For the prime p { n, v,(H,) is not easy to determine. The following propo-
sition indicates that vo(H,,) is determined by the minimum prime factor of n
when n is of the form n = 2% + 1.

Proposition 5.2. Let a be a positive integer and n = 2% + 1 be a composite.
Then vo(Hy) = [logy po] + 1, where pg is the minimum prime factor of n.
Proof. Let pg =2 + .- +2%_ a3 > --- > a; =0, s > 1. For any integer k
withb(n) =1<k<n—1=n—>b(n)and (n,k) > 1, let k = 2°k’, where e > 0
and k' be an odd. Hence there exists a prime p | n such that p | ¥’. Suppose
that k' =20 + ... + 20 By > ... > B, =0, thus B; = |logy k| > |logyp| >
|logy po] = 1. We divide the proof into two cases.

CASE 1. kiseven,ie.,e> 1. Let kg =20 1" 1py = 2071 4.. . 490 IHes—an,
Then

ny\ 2¢ +1 B -
Vo ko = ¥y 901 | ... 4 90— Thae—a =a—(a—1+as—ay) =a;+1.

Since e + 1 < a — 1, we have

n 2¢ +1
”2<k) ”2< 9Bi+e | ... 4 ofite )ae>ﬂl+1>a1+1.

CASE 2. kisodd,i.e., e = 0. Now n—k is even and then vs (Z) = vg( " ) >
a1 + 1 by CAsk 1.
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Therefore, vo(H,) = ay + 1 = |logs po| + 1. This completes the proof. O

Specially, let a = 2¢, i.e., n is a Fermat number. Although we know the
prime factors of n are of the form d = 1 (mod 2/72) [8, p. 59], the specific form
of the minimum prime factor of n has not yet been determined. Hence we just
obtain va(H,) >t + 3.

In addition, even if the degree of p is 1, we still cannot effectively determine
vp(Hp).

Example 5.3. Let p be a prime and n = 2p+1 be a composite. Then v, (Z) =1
for all k satisfying (n, k) > 1.

Example 5.4. Let p > 5 be a prime, n = 6p+5 be a composite. By Kummer’s
Theorem, we have vp(Z) =0ifandonlyif k=ap+7r,0<a<6,0<r<5
with 0 < k < n. A trivial verification shows that (n, k) =1, 7, 13 or 19 for all
k=ap+7r,0<a<6,0<r<5with 0<k <n. Hence

1, if (n,7x13x19) =1,

H,) =
vlHn) =90 (n,7 % 13 x 19) > 1.

In fact, if (n,7 x 13 x 19) =1, then (n,k) =1forallk =ap+r, 0 < a < 6,
0<r<5with0 <k <n. Thus v,(H,) = 1. If one of 7, 13 and 19 divides
n,let k = p+ 2, p+ 3 and p + 4, respectively. Thus we have (n,k) > 1 and
vp(Hy) = 0.
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