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Abstract. Let n ⩾ 2 be an integer, we denote the smallest integer b such

that gcd
{(n

k

)
: b < k < n− b

}
> 1 as b(n). For any prime p, we denote

the highest exponent α such that pα | n as vp(n). In this paper, we par-

tially answer a question asked by Hong in 2016. For a composite number
n and a prime number p with p | n, let n = ampm + r, 0 ⩽ r < pm,

0 < am < p. Then we have

vp
(
gcd

{(n
k

)
: b(n) < k < n− b(n), (n, k) > 1

})
=

{
1, am = 1 and r = b(n),

0, otherwise.

1. Introduction

Let n and k be nonnegative integers. The binomial coefficient
(
n
k

)
is defined

by
(
n
k

)
:= n!

k!(n−k)! if 0 ⩽ k ⩽ n, and
(
n
k

)
:= 0 otherwise. For any finite set

S = {a1, a2, . . . , an} of integers, we denote the greatest common divisor of all
the elements of S by (a1, a2, . . . , an) or gcdS. Since the problem of the greatest
common divisor of binomial coefficients was first studied by Ram [14] in 1909,
many mathematicians have made contributions to this topic. Ram proved that

gcd

{(
n

k

)
: 0 < k < n

}
=

{
p, if n = pm is a power of a prime p,

1, otherwise.

In 1985, Joris, Oestreicher and Steinig [5] gave an explicit formula for gcd
{(

n
k

)
:

r ⩽ k ⩽ s} for any 0 ⩽ r ⩽ s ⩽ n, but it is too complicated to be stated here.
Let p be a prime and n be a positive integer. We denote the highest exponent

α such that pα | n as vp(n), and vp(n) is called the p-adic valuation of n.
We denote the sum of the digits of n in the p-adic as σp(n). Mendelsohn

[12] proved that gcd
{(

2n
2k−1

)
: 1 ⩽ k ⩽ n

}
= 21+v2(n). In 1972, Albree [1]

generalized the result of Mendelsohn by showing that if p is a prime, then
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gcd
{(

pn
k

)
: 1 ⩽ k ⩽ pn, p ∤ k

}
= p1+vp(n). McTague proved in [10] that

vp

(
gcd

{(
2n

2k

)
: 0 < k < n

})
=

{
1, if 2n = pi + pj for some 0 ⩽ i ⩽ j,

0, otherwise,

and showed in [11] that

vp

(
gcd

{(
n

qk

)
: 0 < k <

n

q

})
=

{
1, if σp(n) ⩽ q,

0, otherwise,

for any integers n with 0 < q < n and p ≡ 1 (mod q).
For n ⩾ 2, we denote by b(n) the smallest integer b such that gcd

{(
n
k

)
: b <

k < n − b
}
> 1. In 2004, Granville [15] showed that b(n) = n − pm, where

pm is the largest prime power not greater than n, and Soulé [15] proved that
b(n) ⩽ n

4 .
In 2016, Hong [4] proved that

gcd

{(
mn

k

)
: 1 ⩽ k ⩽ mn, (m, k) = 1

}
= m

∏
prime p|(m,n)

pvp(n).

In addition, Hong asked the following interesting questions in 2016. And one
of the formulas, Fn, was resolved by Xiao, Yuan and Lin [16] in 2022: Let pm

be the largest prime power not greater than n. Then Fn = p. In fact, in 2004,
Kaplan and Levy [6] already gave an explicit formula of Fn.

Problem (Hong [4]). Let n ⩾ 2 be an integer. Find the explicit formula for

Fn := gcd

{(
n

k

)
: b(n) < k < n− b(n)

}
,

Gn := gcd

{(
n

k

)
: b(n) < k < n− b(n), (n, k) = 1

}
and

Hn := gcd

{(
n

k

)
: b(n) < k < n− b(n), (n, k) > 1

}
,

respectively.

In 2001, Baker, Harman and Pintz [3] proved that there exists a prime
number p in [n − n0.525, n] when n is large enough. Although the number of
prime powers in a given interval must be no less than the number of primes,
Panaitopol [13] showed us in the same year that the distributions of primes
and prime powers are of the same order, i.e., π(n) ∼ π∗(n), where π(n) is the
number of primes not greater than n, and π∗(n) is the number of prime powers
not greater than n. Hence b(n) ≪ n0.525.

The main work of the present paper is to give partial conclusions related to
Gn and Hn. We give an explicit formula for vp(Gn) when p ∤ n and vp(Hn)
when p | n. The main result of this paper is as follows.
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Theorem 1.1. Let n ⩾ 2 and n ̸= 6 be a positive integer, p be a prime with
p < n and p ∤ n. Put n = ampm + r, 0 < r < pm, 0 < am < p. We have

vp(Gn) =

{
1, am = 1 and r = b(n),

0, otherwise,

if one of the following two conditions holds.

(1) b(n) ⩽
√
n;

(2) n is large enough.

Theorem 1.2. Let n be a composite number, p be a prime with p | n. Put
n = ampm + r, 0 ⩽ r < pm, 0 < am < p. We have

vp(Hn) =

{
1, am = 1 and r = b(n),

0, otherwise.

2. Preliminaries

In this section, we repeat some relevant lemmas from references without
proofs, which are needed in the proof of Theorems 1.1 and 1.2, thus making
our exposition self-contained.

Lemma 2.1 (Kummer [9, P116]). For any integers 0 ⩽ k ⩽ n and any prime
p, vp

(
n
k

)
is equal to the number of carries when adding k to n − k in base p.

Equivalently, vp
(
n
k

)
is also equal to the number of borrows when subtracting k

from n in base p.

Lemma 2.2 (Soulé [15, Equations (5) and (6)]). For any positive integer n ⩾ 2,
we have b(n) ⩽ n

4 and b(n) ≪ n0.525.

Lemma 2.3 (Koblitz [7, Exercise 1.2.14]). Let n and k be integers with 0 ⩽
k ⩽ n, p be a prime. Then

vp

(
n

k

)
=

σp(k) + σp(n− k)− σp(n)

p− 1
.

Lemma 2.4 (Xiao, Yuan and Lin [16, Lemma 2.3]). Let n > 2 and a be

positive integers with a < n
2 , p be a prime and b(n, p) := n − p⌊logp n⌋. If

0 ⩽ b(n, p) ⩽ a, then σp(k) + σp(n − k) ⩾ p + σp(b(n, p)) for every positive
integers k with a < k < n− a.

Lemma 2.5 (The equivalent forms of the Prime Number Theorem, [2, Theorem
4.4]). Let x be a real number. The first Chebyshev function is given by

ϑ(x) =
∑
p⩽x

p is prime

ln p.

Then

lim
x→∞

ϑ(x)

x
= 1.
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The following lemma is simple but necessary.

Lemma 2.6. Let n ⩾ 2 and n ̸= 6 be a positive integer. Then there exists an
integer k such that b(n) < k < n− b(n) and (n, k) = 1.

Proof. For n = 2 or 4, we have b(2) = b(4) = 0, take k = 1, then b(n) < k <
n− b(n) and (n, k) = 1.

If n > 2 and n ̸= 4, 6, by Lemma 2.2, it suffices to find an integer k such
that n

4 < k ⩽ n
2 and (n, k) = 1. We have

• For n ≡ 1 (mod 2), take k = n−1
2 , then (n, k) = 1 and n

4 < n−1
2 < n

2 .
• For n ≡ 2 (mod 4) and n ̸= 6, take k = n

2 − 2, then (n, k) = 1 and
n
4 < n

2 − 2 < n
2 .

• For n ≡ 0 (mod 4) and n ̸= 4, take k = n
2 − 1, then (n, k) = 1 and

n
4 < n

2 − 1 < n
2 .

This completes the proof. □

3. Proof of Theorem 1.1

Although b(n) ≪ n0.525, Panaitopol [13] showed that we cannot compress
the upper bound of b(n) lower because π(n) ∼ π∗(n). We have verified with
the help of a computer that b(n) <

√
n holds for 2 ⩽ n < 1011. Next we give a

proof of Theorem 1.1.

Proof of Theorem 1.1(1). We have n = ampm + r, 0 < am < p, 0 < r < pm

and (n, p) = 1. We divide the proof into three cases.
Case 1. am > 1. Let k = pm. Then k < n

2 and (n, k) = 1. Since n < pm+1,

we have k > n
m

m+1 ⩾ n1/2 ⩾ b(n) and

vp

(
n

k

)
= vp

(
ampm + r

pm

)
= 0

by Kummer’s Theorem. Hence vp(Gn) = 0.
Case 2. am = 1 and r > b(n). Let k = r. Then k < n

2 and (n, k) = 1. Now

vp

(
n

k

)
= vp

(
pm + r

r

)
= 0,

and vp(Gn) = 0 again.
Case 3. am = 1 and r = b(n). Then n = pm + b(n). By Lemmas 2.3 and

2.4 that

vp(Gn) = min

{
vp

(
n

k

)
: b(n) < k < n− b(n), (n, k) = 1

}
= min

{
σp(k) + σp(n− k)− σp(n)

p− 1
: b(n) < k < n− b(n), (n, k) = 1

}
⩾

p+ σp(b(n))− σp(n)

p− 1
=

p− 1

p− 1
= 1.
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Therefore, it suffices to find a positive integer k such that b(n) < k < n− b(n),
(n, k) = 1 and vp

(
n
k

)
= 1. We divide the process into three subcases.

Subcase 3.1. m ⩾ 3. Since n < pm+1, we have pm−1 > n
m−1
m+1 ⩾ n2/4 ⩾

b(n). Take k = pm−1. Then we have

vp

(
n

k

)
= vp

(
pm + b(n)

pm−1

)
= 1.

Therefore vp(Gn) = 1 in this subcase.

Subcase 3.2. m = 2. Then n = p2 + r. Since r = b(n) ⩽
√
n =

√
p2 + r,

we obtain r ⩽ 1
2

(
1 +

√
4p2 + 1

)
< p+ 1. Notice that r ̸= p, hence r < p. Take

k = p. Then we have

vp

(
n

k

)
= vp

(
p2 + b(n)

p

)
= 1

and vp(Gn) = 1.
Subcase 3.3. m = 1. Then n = p + r, 0 < r < p. By Lemma 2.6, there

exists an integer k with b(n) = r < k < p = n − b(n) such that (n, k) = 1
except for n = 6. Hence

vp

(
n

k

)
= vp

(
p+ r

k

)
= 1

and vp(Gn) = 1 again. □

Proof of Theorem 1.1(2). Let n = ampm + r, 0 < am < p, 0 < r < pm. We
divide the proof into four cases.

Case 1. am > 1 and m ⩾ 2. Let k = pm. Then (n, k) = 1 and k < n
2 . Since

n < pm+1, we have k > n
m

m+1 ⩾ n2/3 > n0.525 ≫ b(n) and

vp

(
n

k

)
= vp

(
ampm + r

pm

)
= 0.

Hence vp(Gn) = 0.
Case 2. am > 1 and m = 1. Let n = ap + r, 1 < a < p, 0 < r < p. We

divide this cases into two subcases.
Subcase 2.1. a ⩽ p0.475 − 1. Then p ⩾ [(a + 1)p]0.525 > n0.525 ≫ b(n).

Take k = p. Then we have (n, k) = 1 and b(n) < k < n
2 . Now

vp

(
n

k

)
= vp

(
ap+ r

p

)
= 0

and vp(Gn) = 0.
Subcase 2.2. a > p0.475−1. Since b(n) ≪ n0.525 < p1.05, we have n−b(n) >

(p0.475 − 1)p− b(n) ≫ p1.475 − p1.05 − p. By Lemma 2.5,∏
q⩽x

q is prime

q ∼ exp(x),
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we have, ∏
p0.05<q⩽p0.475−p0.05−1

q =
∏

q⩽p0.475−p0.05−1

q

/ ∏
q⩽p0.05

q

∼ exp
(
p0.475 − 2p0.05 − 1

)
≫ p2 > n.

It follows that there exists a prime q with (q, n) = 1 and b(n) ≪ p1.05 < qp ⩽
p1.475 − p1.05 − p ≪ n− b(n). Take k = qp. Then we have

vp

(
n

k

)
= vp

(
ap+ r

qp

)
= 0

and vp(Gn) = 0 again.
Case 3. am = 1 and r > b(n). Let k = r. Then r < pm and (n, k) = 1.

Now

vp

(
n

k

)
= vp

(
pm + r

r

)
= 0,

and vp(Gn) = 0 again.
Case 4. am = 1 and r = b(n). Then n = pm + b(n), b(n) < pm and

vp(Gn) ⩾ 1 by Lemmas 2.3 and 2.4. We divide this cases into two subcases.
Subcase 4.1. m ⩾ 3. Take k = pm−1. Then n < 2pm,

k >
(n
2

)m−1
m

⩾
(n
2

)2/3

≫ n0.525 ≫ b(n).

Since

vp

(
n

k

)
= vp

(
pm + b(n)

pm−1

)
= 1

by Kummer’s Theorem, we have vp(Gn) = 1.

Subcase 4.2. m = 2. n = p2+ b(n). Since b(n) ≪ n0.525, p =
√
n− b(n) ∼√

n, we have∏
n0.025<q<p

q =
∏

q⩽p−1

q

/ ∏
q⩽n0.025

q ∼ exp
(
n0.5 − n0.025 − 1

)
≫ n.

It follows that there exist a prime q with (q, n) = 1 and n0.025 < q < p. Take
k = qp. Then we have

vp

(
n

k

)
= vp

(
p2 + b(n)

qp

)
= 1.

Subcase 4.3. m = 1. Then there exists an integer k with b(n) = r < k <
p = n− b(n) such that (n, k) = 1 by Lemma 2.6. Hence

vp

(
n

k

)
= vp

(
p+ r

k

)
= 1

and vp(Gn) = 1. □
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4. Proof of Theorem 1.2

In this section, we will prove Theorem 1.2.

Proof of Theorem 1.2. Let n = ampm + r, 0 < am < p, 0 ⩽ r < pm. We first
consider the case when m ⩾ 2. We divide the proof into three cases.

Case 1. am > 1. Let s =
⌊
am

2

⌋
⩾ 1. Then 2s ⩽ am ⩽ 2s + 1, and hence

2spm ⩽ n < (2s+2)pm. Take k = spm. Then n
2 ⩾ k = spm > sn

2s+2 ⩾ n
4 ⩾ b(n)

by Lemma 2.2. Thus

vp

(
n

k

)
= vp

(
ampm + r

spm

)
= 0

and vp(Hn) = 0.
Case 2. am = 1 and r > b(n). Let k = r. Then k < n

2 and (n, k) ⩾ p. Now

vp

(
n

k

)
= vp

(
pm + r

r

)
= 0,

and vp(Hn) = 0 again.
Case 3. am = 1 and r = b(n). Then vp(Hn) ⩾ 1 by Lemmas 2.3 and 2.4.

Since n = pm + b(n) ⩽ pm + n
4 , we have n

4 ⩽ pm

3 . Take k = (p− 1)pm−1. Then

b(n) ⩽ pm

3 < k < pm = n− b(n). Now

vp

(
n

k

)
= vp

(
pm + b(n)

(p− 1)pm−1

)
= 1

and vp(Hn) = 1.
Next, we consider the case when m = 1. Let n = ap + r, 0 < a < p,

0 ⩽ r < p. Since p | r, we have r = 0 and n = ap. If a = 1, then n = p is a
prime, there is no integer k with b(n) < k < n− b(n) and (n, k) > 1. If a > 2,
then a

4 +1 < 3
4a, thus there exists an integer s such that a

4 < s < 3
4a. If a = 2,

we can take s = 1. Let k = sp. Then b(n) ⩽ n
4 < k < 3

4n ⩽ n− b(n). We have

vp

(
n

k

)
= vp

(
ap

sp

)
= 0,

and vp(Hn) = 0.
This completes the proof. □

5. Examples and remarks

In this section, we will point out the difficulties of vp(Gn) when p | n and
vp(Hn) when p ∤ n.

For the prime p | n, if b(n) = 0, since (n, k) = 1, then

vp

(
n

k

)
= vp

(
n

k

(
n− 1

k − 1

))
= vp(n) + vp

(
n− 1

k − 1

)
⩾ vp(n).

Notice that vp
(
n
1

)
= vp(n), we have vp(Gn) = vp(n).
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If b(n) > 0, we have b(n− 1) = b(n)− 1. Because

vp(Gn) = vp(n) + min

{
vp

(
n− 1

k − 1

)
: b(n) < k < n− b(n), (n, k) = 1

}
,

let n′ = n− 1, k′ = k − 1, and then

min

{
vp

(
n− 1

k − 1

)
: b(n) < k < n− b(n), (n, k) = 1

}
= min

{
vp

(
n′

k′

)
: b(n′) < k′ < n′ − b(n′)− 1, (n′ + 1, k′ + 1) = 1

}
= min

{
vp

(
n′

k′

)
: b(n′) < k′ < n′ − b(n′), (n′ + 1, k′ + 1) = 1

}
.

Hence, it is necessary to find the explicit formula for

(1) gcd

{(
n

k

)
: b(n) < k < n− b(n), (n+ 1, k + 1) = 1

}
.

Although the format of Equation (1) is similar to Gn, it is much more com-
plicated than Gn. And Lemma 2.6 pointing out the coprime integer probably
won’t help in this case.

Example 5.1. It is easy to check that v3(G18) = v3
(
18
7

)
= 2 and v2(G18) =

v2
(
18
5

)
= 3, where 7 = 18

2 − 2 is coprime to 18 by Lemma 2.6 but v2
(
18
7

)
= 4.

That means the minimum value of v2
(
18
k

)
is obtained at k = 5, not at k = 7.

For the prime p ∤ n, vp(Hn) is not easy to determine. The following propo-
sition indicates that v2(Hn) is determined by the minimum prime factor of n
when n is of the form n = 2a + 1.

Proposition 5.2. Let a be a positive integer and n = 2a + 1 be a composite.
Then v2(Hn) = ⌊log2 p0⌋+ 1, where p0 is the minimum prime factor of n.

Proof. Let p0 = 2α1 + · · · + 2αs , α1 > · · · > αs = 0, s > 1. For any integer k
with b(n) = 1 < k < n− 1 = n− b(n) and (n, k) > 1, let k = 2ek′, where e ⩾ 0
and k′ be an odd. Hence there exists a prime p | n such that p | k′. Suppose
that k′ = 2β1 + · · · + 2βr , β1 > · · · > βr = 0, thus β1 = ⌊log2 k′⌋ ⩾ ⌊log2 p⌋ ⩾
⌊log2 p0⌋ = α1. We divide the proof into two cases.

Case 1. k is even, i.e., e ⩾ 1. Let k0 = 2a−α1−1p0 = 2a−1+· · ·+2a−1+αs−α1 .
Then

v2

(
n

k0

)
= v2

(
2a + 1

2a−1 + · · ·+ 2a−1+αs−α1

)
= a−(a−1+αs−α1) = α1+1.

Since e+ β1 ⩽ a− 1, we have

v2

(
n

k

)
= v2

(
2a + 1

2β1+e + · · ·+ 2βr+e

)
= a− e ⩾ β1 + 1 ⩾ α1 + 1.

Case 2. k is odd, i.e., e = 0. Now n−k is even and then v2
(
n
k

)
= v2

(
n

n−k

)
⩾

α1 + 1 by Case 1.
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Therefore, v2(Hn) = α1 + 1 = ⌊log2 p0⌋+ 1. This completes the proof. □

Specially, let a = 2t, i.e., n is a Fermat number. Although we know the
prime factors of n are of the form d ≡ 1 (mod 2t+2) [8, p. 59], the specific form
of the minimum prime factor of n has not yet been determined. Hence we just
obtain v2(Hn) ⩾ t+ 3.

In addition, even if the degree of p is 1, we still cannot effectively determine
vp(Hn).

Example 5.3. Let p be a prime and n = 2p+1 be a composite. Then vp
(
n
k

)
= 1

for all k satisfying (n, k) > 1.

Example 5.4. Let p > 5 be a prime, n = 6p+5 be a composite. By Kummer’s
Theorem, we have vp

(
n
k

)
= 0 if and only if k = ap + r, 0 ⩽ a ⩽ 6, 0 ⩽ r ⩽ 5

with 0 < k < n. A trivial verification shows that (n, k) = 1, 7, 13 or 19 for all
k = ap+ r, 0 ⩽ a ⩽ 6, 0 ⩽ r ⩽ 5 with 0 < k < n. Hence

vp(Hn) =

{
1, if (n, 7× 13× 19) = 1,

0, if (n, 7× 13× 19) > 1.

In fact, if (n, 7× 13× 19) = 1, then (n, k) = 1 for all k = ap+ r, 0 ⩽ a ⩽ 6,
0 ⩽ r ⩽ 5 with 0 < k < n. Thus vp(Hn) = 1. If one of 7, 13 and 19 divides
n, let k = p + 2, p + 3 and p + 4, respectively. Thus we have (n, k) > 1 and
vp(Hn) = 0.
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