DOI QR코드

DOI QR Code

Applicability of abrasive waterjet cutting to irradiated graphite decommissioning

  • Received : 2022.12.09
  • Accepted : 2023.03.20
  • Published : 2023.07.25

Abstract

Characterization, dismantling and pre-disposal management of irradiated graphite (i-graphite) have an important role in safe decommissioning of several nuclear facilities which used this material as moderator and reflector. In addition to common radiation protection issues, easily volatizing long-lived radionuclides and stored Wigner energy could be released during imprudent retrieval and processing of i-graphite. With this regard, among all cutting technologies, abrasive waterjet (AWJ) can successfully achieve all of the thermo-mechanical and radiation protection objectives. In this work, factorial experiments were designed and systematically conducted to characterize the AWJ processing parameters and the machining capability. Moreover, the limitation of dust production and secondary waste generation has been addressed since they are important aspects for radiation protection and radioactive waste management. The promising results obtained on non-irradiated nuclear graphite blocks demonstrate the applicability of AWJ as a valid technology for optimizing the retrieval, storage, and disposal of such radioactive waste. These activities would benefit from the points of view of safety, management, and costs.

Keywords

References

  1. Characterization, Treatment and Conditioning of Radioactive Graphite from Decommissioning of Nuclear Reactors, IAEA, 2006. 
  2. Processing of Irradiated Graphite to Meet Acceptance Criteria Got Waste Disposal : Results of a Coordinated Research Project, International Atomic Energy Agency, Vienna, Austria, 2016. 
  3. A. Wickham, H.J. Steinmetz, P. O'Sullivan, M.I. Ojovan, Updating irradiated graphite disposal: project 'GRAPA' and the international decommissioning network, J. Environ. Radioact. 171 (2017), https://doi.org/10.1016/j.jenvrad.2017.01.022. 
  4. I.A.E. Agency, Progress in Radioactive Graphite Waste Management, International Atomic Energy Agency (IAEA), 2010. http://inis.iaea.org/search/search.aspx?orig_q=RN:42052519. 
  5. R. Plukiene, E. Lagzdina, L. Juodis, A. Plukis, A. Puzas, R. Gvozdaite, V. Remeikis, Z. Revay, J. Ku cera, D. Ancius, D. Ridikas, Investigation of impurities of RBMK graphite by different methods, Radiocarbon 60 (2018), https://doi.org/10.1017/RDC.2018.93. 
  6. R. Takahashi, M. Toyahara, S. Maruki, H. Ueda, T. Yamamoto, Investigation of Morphology and Impurity of Nuclear Grade Graphite, and Leaching Mechanism of Carbon-14, Nuclear Graphite Waste Management Technical Committee Meeting, 2001. 
  7. E. Mossini, Z. Revay, A. Camerini, M. Giola, G. Magugliani, E. Macerata, M. Mariani, Determination of nuclear graphite impurities by prompt gamma activation analysis to support decommissioning operations, J. Radioanal. Nucl. Chem. 331 (2022) 3117-3123, https://doi.org/10.1007/s10967-022-08381-3. 
  8. C. Frechou, J.P. Degros, Radiological inventory of irradiated graphite samples, J. Radioanal. Nucl. Chem. 273 (2007), https://doi.org/10.1007/s10967-007-0930-6. 
  9. X. Hou, Rapid analysis of 14C and 3H in graphite and concrete for decommissioning of nuclear reactor, Appl. Radiat. Isot. (2005) 62, https://doi.org/10.1016/j.apradiso.2005.01.008. 
  10. E. Mossini, L. Codispoti, G. Parma, F.M. Rossi, E. Macerata, A. Porta, F. Campi, M. Mariani, MCNP model of L-54M nuclear research reactor: validation by preliminary graphite radiological characterization, J. Radioanal. Nucl. Chem. 322 (2019), https://doi.org/10.1007/s10967-019-06913-y. 
  11. K. Fu, M. Chen, S. Wei, X. Zhong, A comprehensive review on decontamination of irradiated graphite waste, J. Nucl. Mater. 559 (2022), https://doi.org/10.1016/j.jnucmat.2021.153475. 
  12. J. Fachinger, W. von Lensa, T. Podruhzina, Decontamination of nuclear graphite, Nucl. Eng. Des. 238 (2008) 3086-3091, https://doi.org/10.1016/j.nucengdes.2008.02.010. 
  13. J. Li, M. lou Dunzik-Gouga, J. Wang, Recent advances in the treatment of irradiated graphite: a review, Ann. Nucl. Energy 110 (2017), https://doi.org/10.1016/j.anucene.2017.06.040. 
  14. I.A.E. Agency, Selection of Decommissioning Strategies: Issues and Factors Report by an Expert Group, International Atomic Energy Agency (IAEA), 2005. http://inis.iaea.org/search/search.aspx?orig_q=RN:37026187. 
  15. E.v. Bespala, M.v. Antonenko, D.O. Chubreev, A.v. Leonov, I.Y. Novoselov, A.P. Pavlenko, V.N. Kotov, Electrochemical treatment of irradiated nuclear graphite, J. Nucl. Mater. 526 (2019), https://doi.org/10.1016/j.jnucmat.2019.151759. 
  16. A. Theodosiou, A.N. Jones, D. Burton, M. Powell, M. Rogers, V.B. Livesey, The complete oxidation of nuclear graphite waste via thermal treatment: an alternative to geological disposal, J. Nucl. Mater. 507 (2018), https://doi.org/10.1016/j.jnucmat.2018.05.002. 
  17. G. Wei, Y. Miao, B. Yuan, X. Lu, Investigation of the mechanism for simulated graphite waste treatment via microwave sintering technology, J. Hazardous Mater. Lett. 2 (2021), https://doi.org/10.1016/j.hazl.2021.100046. 
  18. S. Norris, M. Capouet, Overview of CAST project, Radiocarbon 60 (2018), https://doi.org/10.1017/RDC.2018.142. 
  19. M.P. Metcalfe, A.W. Banford, H. Eccles, S. Norris, EU Carbowaste project: development of a toolbox for graphite waste management, J. Nucl. Mater. 436 (2013), https://doi.org/10.1016/j.jnucmat.2012.11.016. 
  20. M.I. Ojovan, A.J. Wickham, Processing of irradiated graphite: the outcomes of an IAEA coordinated research project, MRS Adv. (2016), https://doi.org/10.1557/adv.2017.198. 
  21. L. Abrahamsen-Mills, A. Wareing, L. Fowler, R. Jarvis, S. Norris, A. Banford, Development of a multi criteria decision analysis framework for the assessment of integrated waste management options for irradiated graphite, Nucl. Eng. Technol. 53 (2021) 1224-1235, https://doi.org/10.1016/J.NET.2020.10.008. 
  22. G. Canzone, R. lo Frano, M. Sumini, F. Troiani, Dismantling of the graphite pile of Latina NPP: characterization and handling/removal equipment for single brick or multi-bricks, Prog. Nucl. Energy 93 (2016), https://doi.org/10.1016/j.pnucene.2016.08.010. 
  23. A. Wareing, L. Abrahamsen-Mills, L. Fowler, M. Grave, R. Jarvis, M. Metcalfe, S. Norris, A.W. Banford, Development of integrated waste management options for irradiated graphite, Nucl. Eng. Technol. 49 (2017), https://doi.org/10.1016/j.net.2017.03.001. 
  24. R.H. Telling, M.I. Heggie, Radiation defects in graphite, Phil. Mag. 87 (2007), https://doi.org/10.1080/14786430701210023. 
  25. R. Wakeford, The Windscale reactor accident - 50 Years on, J. Radiol. Prot. 27 (2007), https://doi.org/10.1088/0952-4746/27/3/E02. 
  26. M.P.G. Annoni, M. Monno, C. Ravasio, Water Jet, a Flexible Technology, Polipress, 2007. 
  27. D. Krajcarz, Comparison Metal Water Jet Cutting with Laser and Plasma Cutting, in: Procedia Eng, 2014, https://doi.org/10.1016/j.proeng.2014.03.061. 
  28. G.R. Lee, B.J. Lim, D.W. Cho, C.D. Park, Selection methodology of the optimal cutting technology for dismantling of components in nuclear power plants, Ann. Nucl. Energy 166 (2022), https://doi.org/10.1016/j.anucene.2021.108808. 
  29. Y. Nakamura, K. Sano, Y. Morishita, S. Maruyama, S. Tezuka, D. Ogane, Y. Takashima, The study on abrasive water jet for predicting the cutting performance and monitoring the cutting situation in the water, J. Eng. Gas Turbines Power 133 (2011), https://doi.org/10.1115/1.4002252. 
  30. L. Denissen, L. Ooms, H. Davain, Remote high pressure water jet cutting used at the BR3 nuclear dismantling site, in: 17th International Conference on Water Jetting: Advances and Future Needs, 2004. 
  31. H. Louis, D. Peter, F. Pude, R. Versemann, Flexible and mobile abrasive waterjet cutting system for dismantling applications, in: WJTA American Waterjet Conference 2005 (13th), 2005. 
  32. K.S. Jeong, S.K. Park, I.H. Hahm, J.H. Ha, S.J. Min, S.B. Hong, B.K. Seo, B. Lee, D.H. Kim, J.H. Kim, S.Y. Jeong, S.M. Ahn, J.J. Lee, B.S. Lee, Approach to optimization of risk assessment based on an evaluation matrix for decommissioning processes of a nuclear facility, Ann. Nucl. Energy 128 (2019), https://doi.org/10.1016/j.anucene.2018.12.049. 
  33. A.W. Momber, R. Kovacevic, Principles of Abrasive Water Jet Machining, first ed., Springer London, London, 1998 https://doi.org/10.1007/978-1-4471-1572-4. 
  34. S. Schmolke, F. Pude, L. Kirsch, M. Honl, K. Schwieger, S. Kromer, Temperature measurements during abrasive water jet osteotomy, Biomed. Tech. 49 (2004), https://doi.org/10.1515/bmt.2004.004. 
  35. J.A. McGeough, Cutting of food products by ice-particles in a water-jet, in: Procedia CIRP, 2016, https://doi.org/10.1016/j.procir.2016.03.009. 
  36. M. Annoni, F. Arleo, F. Vigano, Micro-waterjet technology, in: Micro-Manufacturing Technologies and Their Applications, Springer, 2017, pp. 129-148. 
  37. M. Tezuka, Y. Nakamura, H. Iwai, K. Sano, Y. Fukui, The development of thermal and mechanical cutting technology for the dismantlement of the internal core of Fukushima Daiichi NPS, J. Nucl. Sci. Technol. 51 (2014), https://doi.org/10.1080/00223131.2014.912969. 
  38. D. Holland, U. Quade, F.W. Bach, P. Wilk, A German Research Project about Applicable Graphite Cutting Techniques, 2001. 
  39. R.E. Nightingale, Nuclear Graphite: Prepared under the Auspices of the Division of Technical Information united states Atomic Energy Commission, Academic press, 2013. https://books.google.co.uk/books?id=qMg3BQAAQBAJ. 
  40. M. Harada, I. Yokota, K. Nishi, K. Nakamura, M. Yokota, F. Sato, Reactor dismantling by abrasive water jet cutting system, JSME Int. J. Series B 36 (1993), https://doi.org/10.1299/jsmeb.36.499. 
  41. H. Nakamura, T. Narazaki, S. Yanagihara, Cutting technique and system for biological shield, Nucl. Technol. 86 (1989), https://doi.org/10.13182/nt89-a34267. 
  42. M. Hashish, Kinetic power density in waterjet cutting, in: Proceedings of the 22nd International Conference on Water Jetting, 2014. 
  43. M. Hashish, Pressure effects in abrasive-waterjet (AWJ) machining, J. Eng. Mater. Technol. 111 (1989) 221-228, https://doi.org/10.1115/1.3226458. 
  44. E. Copertaro, F. Perotti, P. Castellini, P. Chiariotti, M. Martarelli, M. Annoni, Focusing tube operational vibration as a means for monitoring the abrasive waterjet cutting capability, J. Manuf. Process. 59 (2020) 1-10, https://doi.org/10.1016/J.JMAPRO.2020.09.040. 
  45. E. Copertaro, F. Perotti, M. Annoni, Operational vibration of a waterjet focuser as means for monitoring its wear progression, (n.d.). https://doi.org/10.1007/s00170-021-07534-0/Published. 
  46. E. Copertaro, M. Annoni, Airborne acoustic emission of an abrasive waterjet cutting system as means for monitoring the jet cutting capability, Int. J. Adv. Manuf. Technol. 123 (2022) 2655-2667, https://doi.org/10.1007/s00170-022-10317-w. 
  47. A.I. Hassan, C. Chen, R. Kovacevic, On-line monitoring of depth of cut in AWJ cutting, Int. J. Mach. Tool Manufact. 44 (2004) 595-605, https://doi.org/10.1016/j.ijmachtools.2003.12.002. 
  48. B. Jurisevic, D. Brissaud, M. Junkar, Monitoring of abrasive water jet (AWJ) cutting using sound detection, Int. J. Adv. Manuf. Technol. 24 (2004) 733-737, https://doi.org/10.1007/s00170-003-1752-5. 
  49. V. Perzel, P. Hreha, S. Hloch, H. Tozan, J. Valicek, Vibration emission as a potential source of information for abrasive waterjet quality process control, Int. J. Adv. Manuf. Technol. 61 (2012) 285-294, https://doi.org/10.1007/s00170-011-3715-6. 
  50. P. Hreha, A. Radvanska, S. Hloch, V. Per zel, G. Krolczyk, K. Monkov a, Determination of vibration frequency depending on abrasive mass flow rate during abrasive water jet cutting, Int. J. Adv. Manuf. Technol. 77 (2015) 763-774, https://doi.org/10.1007/s00170-014-6497-9. 
  51. I.A. Popan, V. Bocanet, N. Balc, A.I. Popan, Investigation on feed rate influence on surface quality in abrasive water jet cutting of composite materials, monitoring acoustic emissions, in: S. Hloch, D. Klichova, G.M. Krolczyk, S. Chattopadhyaya, L. Ruppenthalov a (Eds.), Advances in Manufacturing Engineering and Materials, Springer International Publishing, Cham, 2019, pp. 105-113. 
  52. P. Sutowski, M. Sutowska, W. Kaplonek, The use of high-frequency acoustic emission analysis for in-process assessment of the surface quality of aluminium alloy 5251 in abrasive waterjet machining, Proc. Inst. Mech. Eng. B J. Eng. Manuf. 232 (2017) 2547-2565, https://doi.org/10.1177/0954405417703428. 
  53. H. Li, Monitoring the abrasive waterjet drilling of Inconel 718 and steel: a comparative study, Int. J. Adv. Manuf. Technol. 107 (2020) 3401-3414, https://doi.org/10.1007/s00170-020-05246-5. 
  54. M.M. Ohadi, A.I. Ansari, M. Hashish, Thermal energy distributions in the workpiece during cutting with an abrasive waterjet, J. Eng. Indust. 114 (1992) 67-73, https://doi.org/10.1115/1.2899760. 
  55. M.M. Ohadi, K.L. Cheng, Modeling of temperature distributions in the workpiece during abrasive waterjet machining, J. Heat Tran. 115 (1993) 446-452, https://doi.org/10.1115/1.2910697. 
  56. R. Kovacevic, R. Mohan, H.E. Beardsley, Monitoring of thermal energy distribution in abrasive waterjet cutting using infrared thermography, J. Manuf. Sci. Eng. 118 (1996) 555-563, https://doi.org/10.1115/1.2831067. 
  57. V. Perzel, M. Flimel, J. Krolczyk, A.S. Sedmak, A. Ruggiero, D. Kozak, A. Stoic, G. Krolczyk, S. Hloch, Measurement of thermal emission during cutting of materials using abrasive water jet, Therm. Sci. 21 (2017) 2197-2203.  https://doi.org/10.2298/TSCI150212046P
  58. N. Yuvaraj, M.P. Kumar, Cutting of aluminium alloy with abrasive water jet and cryogenic assisted abrasive water jet: a comparative study of the surface integrity approach, Wear 362-363 (2016) 18-32, https://doi.org/10.1016/j.wear.2016.05.008. 
  59. G. Parma, F.M. Rossi, E. Mossini, M. Giola, E. Macerata, E. Padovani, A. Cammi, M. Mariani, MCNP model of L-54 M nuclear research reactor: development and preliminary verification, J. Radioanal. Nucl. Chem. 318 (2018), https://doi.org/10.1007/s10967-018-6301-7. 
  60. G.E.P. Box, W.H. Hunter, S. Hunter, Others, Statistics for Experimenters, John Wiley and sons, New York, 1978. 
  61. D.C. Montgomery, Design and Analysis of Experiments, John wiley & sons, 2017. 
  62. K.M. Roscioli-Johnson, C.A. Zarzana, G.S. Groenewold, B.J. Mincher, A. Wilden, H. Schmidt, G. Modolo, B. Santiago-Schubel, A Study of the γ-Radiolysis of N,N-Didodecyl-N',N'-Dioctyldiglycolamide Using UHPLC-ESI-MS Analysis, Solvent Extraction and Ion Exchange, 2016, https://doi.org/10.1080/07366299.2016.1212540. 
  63. Predisposal Management of Radioactive Waste, INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2009. https://www.iaea.org/publications/8004/predisposal-management-of-radioactive-waste. 
  64. Decommissioning of Nuclear Power Plants, Research Reactors and Other Nuclear Fuel Cycle Facilities, INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2018. https://www.iaea.org/publications/12210/decommissioning-of-nuclear-power-plants-research-reactors-and-other-nuclear-fuel-cyclefacilities. 
  65. B.T. Kelly, The behavior of graphite under neutron irradiation, J. Vac. Sci. Technol. 4 (1986) 1171-1178, https://doi.org/10.1116/1.573432. 
  66. G. Aydin, Performance of recycling abrasives in rock cutting by abrasive water jet, J. Cent. South Univ. 22 (2015) 1055-1061, https://doi.org/10.1007/s11771-015-2616-5. 
  67. A.M.A. Budiea, W.Z. Sek, S.N. Mokhatar, K. Muthusamy, A.R.M. Yusoff, Structural performance assessment of high strength concrete containing spent Garnet under three point bending test, IOP Conf. Ser. Mater. Sci. Eng. 1144 (2021), 012018, https://doi.org/10.1088/1757-899X/1144/1/012018. 
  68. M. Hashish, M. Halter, M. McDonald, Abrasive-waterjet Deep Kerfing in Concrete for Nuclear Facility Decommissioning, SPONSORED BY UNITED STATES BUREAU OF MINES UNIVERSITY OF PITTSBURGH WATER JET TECHNOLOGY ASSOCIATION, 1985, p. 97.