DOI QR코드

DOI QR Code

Analysis for the secondary gamma-ray emission for glasses irradiated with various doses of fast neutron: Case study borate and silicate glasses

  • O.L. Tashlykov (Ural Federal University) ;
  • V. Yu. Litovchenko (Ural Federal University) ;
  • N.M. Aristov (Ural Federal University) ;
  • K.A. Mahmoud (Ural Federal University)
  • Received : 2023.02.02
  • Accepted : 2023.03.29
  • Published : 2023.07.25

Abstract

Are borate and silicate glasses suitable for working as shieling materials against fast neutrons? To correctly answer the above question, some silicate, and borate-based glasses were fabricated and irradiated with various doses of fast neutrons varied between 1.73 and 12.10 MGy. The color and hardness of the fabricated glasses were affected by the fast neutron fluence where the transparent glasses turned colored as well as the hardness of the fabricated glasses was decreased. The gamma-ray spectrometric analysis shows a high activity concentration produced in the barium borate glasses due to the formation of radioisotopes Ba-131 and Ba-133 reaches to 5.92E+05 Bq and 4.25E+03 Bq, respectively for sample Cd-5 Batch 3. Additionally, the gamma-ray spectrometric analysis for the sodium silicate glasses shows low activity concentrations emitted from isotopes formed due to the activation of Y2O3-associated impurities. These activities are low compared to that emitted by barium borate-based glasses.

Keywords

References

  1. O.L. Tashlykov, A.M. Grigoryev, Y.A. Kropachev, Reducing the exposure dose by optimizing the route of personnel movement when visiting specified points and taking into account the avoidance of obstacles, Energies (Basel) 15 (2022) 8222, https://doi.org/10.3390/en15218222.
  2. O.L. Tashlykov, A.N. Sesekin, A.G. Chentsov, A.A. Chentsov, Development of methods for route optimization of work in inhomogeneous radiation fields to minimize the dose load of personnel, Energies (Basel) 15 (2022) 4788, https://doi.org/10.3390/en15134788.
  3. A.F. Mikhailova, O.L. Tashlykov, The ways of implementation of the optimization principle in the personnel radiological protection, Physics of Atomic Nuclei 83 (2020) 1718-1726, https://doi.org/10.1134/S1063778820100154.
  4. Y.A. Kropachev, O.L. Tashlykov, S.E. Shcheklein, Optimization of radiation protection at the NPP unit decommissioning stage, Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika. (2019) 119-130, https://doi.org/10.26583/npe.2019.1.11, 2019.
  5. Yu. v. Nosov, A.v. Rovneiko, O.L. Tashlykov, S.E. Shcheklein, Decommissioning features of BN-350, -600 fast reactors, Atomic Energy 125 (2019) 219-223, https://doi.org/10.1007/s10512-019-00470-z.
  6. I.M. Russkikh, E.N. Seleznev, O.L. Tashlykov, S.E. Shcheklein, Experimental and theoretical study of organometallic radiation-protective materials adapted to radiation sources with a complex isotopic composition, Physics of Atomic Nuclei 78 (2015) 1451-1456, https://doi.org/10.1134/S106377881512008X.
  7. O.L. Tashlykov, S.E. Shcheklein, V.Y. Luk'yanenko, A.F. Mikhajlova, I.M. Russkikh, E.N. Seleznyov, A.V. Kozlov, The optimization of radiation protection composition, Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika (2015) 36-42, https://doi.org/10.26583/npe.2015.4.04, 2015.
  8. C. Jumpee, D. Wongsawaeng, Innovative neutron shielding materials composed of natural rubber-styrene butadiene rubber blends, boron oxide and iron(III) oxide, J Phys Conf Ser 611 (2015), 012019, https://doi.org/10.1088/1742-6596/611/1/012019.
  9. F. Glenn, Knoll, Radiation Detection and Measurement, third ed., John Wiley and Sons, New York, 2003.
  10. A.M. El-Khayatt, NXcom - a program for calculating attenuation coefficients of fast neutrons and gamma-rays, Ann Nucl Energy 38 (2011) 128-132, https://doi.org/10.1016/j.anucene.2010.08.003.
  11. E. Sakar, O.F. Ozpolat, B. Alim, M.I. Sayyed, M. Kurudirek, Phy-X / PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry, Radiation Physics and Chemistry 166 (2020), https://doi.org/10.1016/j.radphyschem.2019.108496.
  12. B. Aygun, E. Sakar, E. Cinan, N.Y. Yorgun, M.I. Sayyed, O. Agar, A. Karabulut, Development and production of metal oxide doped glasses for gamma ray and fast neutron shielding, Radiation Physics and Chemistry 174 (2020), 108897, https://doi.org/10.1016/j.radphyschem.2020.108897.
  13. G. Lakshminarayana, Y. Elmahroug, A. Kumar, H.O. Tekin, N. Rekik, M. Dong, D.E. Lee, J. Yoon, T. Park, Detailed inspection of γ-ray, fast and thermal neutrons shielding competence of calcium oxide or strontium oxide comprising bismuth borate glasses, Materials 14 (2021), https://doi.org/10.3390/ma14092265.
  14. K.A. Mahmoud, F.I. El-Agawany, O.L. Tashlykov, E.M. Ahmed, Y.S. Rammah, The influence of BaO on the mechanical and gamma / fast neutron shielding properties of lead phosphate glasses, Nuclear Engineering and Technology 53 (2021) 3816-3823, https://doi.org/10.1016/j.net.2021.06.005.
  15. I.S. Mahmoud, S.A.M. Issa, Y.B. Saddeek, H.O. Tekin, O. Kilicoglu, T. Alharbi, M.I. Sayyed, T.T. Erguzel, R. Elsaman, Gamma, neutron shielding and mechanical parameters for lead vanadate glasses, Ceram Int 45 (2019) 14058-14072, https://doi.org/10.1016/j.ceramint.2019.04.105.
  16. M.I. Sayyed, G. Lakshminarayana, M.G. Dong, M.C. Ersundu, A.E. Ersundu, I. v Kityk, Investigation on gamma and neutron radiation shielding parameters for BaO/SrO-Bi2O3-B2O3 glasses, Radiation Physics and Chemistry 145 (2018) 26-33, https://doi.org/10.1016/j.radphyschem.2017.12.010.
  17. M.H.A. Mhareb, Y.S.M. Alajerami, N. Dwaikat, M.S. Al-Buriahi, M. Alqahtani, F. Alshahri, N. Saleh, N. Alonizan, M.A. Saleh, M.I. Sayyed, Investigation of photon, neutron and proton shielding features of H3BO3-ZnO-Na2O-BaO glass system, Nuclear Engineering and Technology 53 (3) (2020) 949-959, https://doi.org/10.1016/j.net.2020.07.035.
  18. I. Akkurt, A.M. El-Khayatt, The effect of barite proportion on neutron and gamma-ray shielding, Ann Nucl Energy 51 (2013) 5-9, https://doi.org/10.1016/j.anucene.2012.08.026.
  19. M.I. Sayyed, H.O. Tekin, O. Agar, Gamma photon and neutron attenuation properties of MgO-BaO-B2O3-TeO2-Cr2O3 glasses: the role of TeO2, Radiation Physics and Chemistry 163 (2019) 58-66, https://doi.org/10.1016/j.radphyschem.2019.05.012.
  20. H.O. Tekin, E.E. Altunsoy, E. Kavaz, M.I. Sayyed, O. Agar, M. Kamislioglu, Photon and neutron shielding performance of boron phosphate glasses for diagnostic radiology facilities, Results Phys 12 (2019) 1457-1464, https://doi.org/10.1016/j.rinp.2019.01.060.
  21. H.O. Tekin, E. Kavaz, A. Papachristodoulou, M. Kamislioglu, O. Agar, E.E. Altunsoy Guclu, O. Kilicoglu, M.I. Sayyed, Characterization of SiO2-PbO-CdO-Ga2O3 glasses for comprehensive nuclear shielding performance: alpha, proton, gamma, neutron radiation, Ceram Int 45 (2019) 19206-19222, https://doi.org/10.1016/j.ceramint.2019.06.168.
  22. K.A. Naseer, G. Sathiyapriya, K. Marimuthu, T. Piotrowski, M.S. Alqahtani, E.S. Yousef, Optical, elastic, and neutron shielding studies of Nb2O5 varied Dy3+ doped barium-borate glasses, Optik (Stuttg). 251 (2022), 168436, https://doi.org/10.1016/j.ijleo.2021.168436.
  23. V.P. Singh, N.M. Badiger, N. Chanthima, J. Kaewkhao, Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses, Radiation Physics and Chemistry 98 (2014) 14-21, https://doi.org/10.1016/j.radphyschem.2013.12.029.
  24. M.S. Al-Buriahi, A.S. Abouhaswa, H.O. Tekin, C. Sriwunkum, F.I. El-Agawany, T. Nutaro, E. Kavaz, Y.S. Rammah, Structure, optical, gamma-ray and neutron shielding properties of NiO doped B2O3-BaCO3-Li2O3 glass systems, Ceram Int 46 (2020) 1711-1721, https://doi.org/10.1016/j.ceramint.2019.09.144.
  25. M.I. Sayyed, A. Kumar, H.O. Tekin, R. Kaur, M. Singh, O. Agar, M.U. Khandaker, Evaluation of gamma-ray and neutron shielding features of heavy metals doped Bi2O3-BaO-Na2O-MgO-B2O3 glass systems, Progress in Nuclear Energy 118 (2020), 103118, https://doi.org/10.1016/j.pnucene.2019.103118.
  26. Y. Al-Hadeethi, M.I. Sayyed, Radiation attenuation properties of Bi2O3- -Na2O- V2O5- TiO2-TeO2 glass system using Phy-X / PSD software, Ceram Int 46 (2020) 4795-4800, https://doi.org/10.1016/j.ceramint.2019.10.212.
  27. M.H.A. Mhareb, Y. Slimani, Y.S. Alajerami, M.I. Sayyed, E. Lacomme, M.A. Almessiere, Structural and radiation shielding properties of BaTiO3 ceramic with different concentrations of Bismuth and Ytterbium, Ceram Int 46 (2020) 28877-28886, https://doi.org/10.1016/j.ceramint.2020.08.055.
  28. O.L. Tashlykov, S.G. Vlasova, I.S. Kovyazina, K.A. Mahmoud, Repercussions of yttrium oxides on radiation shielding capacity of sodium-silicate glass system: experimental and Monte Carlo simulation study, The European Physical Journal Plus 136 (2021) 428, https://doi.org/10.1140/epjp/s13360-021-01420-0.
  29. O.L. Tashlykov, M.I. Sayyed, K.A. Mahmoud, M.U. Khandaker, D.A. Bradley, S.G. Vlasova, Tailor made barium borate doped Bi2O3 glass system for radiological protection, Radiation Physics and Chemistry 187 (2021), 109558, https://doi.org/10.1016/j.radphyschem.2021.109558.
  30. K.A. Mahmoud, O.L. Tashlykov, A.H. Almuqrin, M.I. Sayyed, S.G. Vlasova, Assessment of mechanical and radiation shielding capacity for a ternary CdO-BaO-B2O3 glass system: a comprehensive experimental, Monte Carlo simulation, and theoretical studies, Progress in Nuclear Energy 146 (2022), 104169, https://doi.org/10.1016/j.pnucene.2022.104169.
  31. D.N. Litvinov, V.S. Kostarev, V.A. Klimova, O.L. Tashlykov, N.M. Aristov, Thermohydraulic simulation of a channel with targets for production of radioactive isotopes in the IVV-2M nuclear reactor, J Phys Conf Ser 1701 (2020), 012001, https://doi.org/10.1088/1742-6596/1701/1/012001.
  32. D.N. Litvinov, V.S. Kostarev, O.L. Tashlykov, V.A. Klimova, N.M. Aristov, S.B. Zlokazov, Thermal Hydraulic Simulation of a Channel with Targets for Production of Selenium-75 Isotope, 2020, 070011, https://doi.org/10.1063/5.0032212.
  33. O.L. Tashlykov, S.E. Shcheklein, I.M. Russkikh, E.N. Seleznev, A.v. Kozlov, Composition optimization of homogeneous radiation-protective materials for planned irradiation conditions, Atomic Energy 121 (2017) 303-307, https://doi.org/10.1007/s10512-017-0202-7.
  34. M.F. Zhang, H.L. Zhang, J.C. Han, H.X. Guo, C.H. Xu, G.B. Ying, H.T. Shen, N.N. Song, Effects of neutron irradiation and subsequent annealing on the optical characteristics of sapphire, Physica B Condens Matter 406 (2011) 494-497, https://doi.org/10.1016/j.physb.2010.11.021.
  35. I.I. Orlovskiy, K.Yu. Vukolov, E.N. Andreenko, M.N. Gulyukin, Neutron irradiation of flint glasses for optics in ITER, Nuclear Materials and Energy 15 (2018) 249-253, https://doi.org/10.1016/j.nme.2018.05.009.