DOI QR코드

DOI QR Code

Transmission of 200-Gb/s 2-channel OTDM-PAM4 Signal Based on CSRZ Pulse Generated by Mach-Zehnder Modulator

마하 젠더 변조기로 생성된 CSRZ 펄스 기반의 200 Gb/s OTDM-PAM4 신호의 전송

  • Sunghyun Bae (Department of Electronics Information & Communication Engineering, Kangwon National University)
  • 배성현 (강원대학교 전자정보통신공학과)
  • Received : 2023.04.26
  • Accepted : 2023.06.15
  • Published : 2023.08.25

Abstract

We propose to implement cost-effectively a high-speed short-haul interconnect by transmitting a 200-Gb/s/λ two-channel optical time-division-multiplexed signal generated by a carrier-suppressed optical pulse, which improves the robustness of the multiplexed signal to chromatic dispersion. The multiplexed 200-Gb/s signal is generated in the transmitter by combining two 100-Gb/s 4-level pulse-amplitude-modulated signals (generated using the optical pulse and two Mach-Zehnder modulators). After the signal is transmitted over a fiber, it is amplified by a semiconductor optical amplifier and detected by a photodiode. The amplified spontaneous emission noise is eliminated by an optical band-pass filter. The transmitted signal is reconstructed by a 2 × 2 multiple-input multiple-output equalizer, which compensates for crosstalk. Due to the use of the carrier-suppressed optical pulse, the 200-Gb/s signal can be transmitted over fiber with a chromatic dispersion of 40 ps/nm.

파장당 200 Gb/s급 신호를 전송하는 고속 근거리 광통신 시스템을 비용 효율적으로 구축하기 위한 방안으로서 캐리어 억제 펄스 기반의 2채널 광학적 시분할 다중화 시스템을 제안한다. 캐리어 억제 펄스는 널 바이어스가 인가된 마하 젠더 변조기로 생성되며, 이는 시분할 다중화 신호를 색분산에 강인하게 만든다. 송신부에서는 캐리어 억제 펄스를 둘로 분기하고, 각각을 100 Gb/s의 4레벨 진폭 변조 신호로 변조한 후, 광학적 시분할 다중화를 통해 200 Gb/s의 신호를 생성한다. 다중화된 광 신호는 광섬유로 전송된 후, 반도체 광 증폭기로 증폭되며, 한 개의 광 검출기로 검출된다. 증폭기에 의해 발생한 잡음은 광학 필터로 제거된다. 시분할 다중화 과정에서 발생하는 누화는 다중 입력-다중 출력 이퀄라이저로 보상한다. 본 연구에서는 200 Gb/s의 고속 신호를 40 ps/nm의 색분산을 갖는 광섬유로 전송하여도 3.8×10-3 이하의 비트 오율을 확보할 수 있음을 시뮬레이션으로 확인하였다.

Keywords

Acknowledgement

2022년도 강원대학교 대학회계 학술연구조성비; 2022년도 정부(과학기술정보통신부) 재원, 정보통신기획평가원 지원(No. 2021-0-00809, Tbps급 광통신 인프라 기술 개발).

References

  1. Q. Hu, M. Chagnon, K. Schuh, F. Buchali, and H. Bulow, "IM/ DD beyond bandwidth limitation for data center optical interconnects," J. Lightwave Technol. 37, 4940-4946 (2019). https://doi.org/10.1109/JLT.2019.2926218
  2. X. Zhou, R. Urata, and H. Liu, "Beyond 1 Tb/s datacenter interconnect technology: Challenges and solutions," in Optical Fiber Communications Conference and Exhibition (Optica Publishing Group, 2019), paper Tu2F.5.
  3. "IEEE Std 802.3ba media access control parameters, physical layers, and management parameters for 40 Gb/s and 100 Gb/s operation," IEEE Standard Association, IEEE 802.3db-2022 (2022).
  4. S. Kanazawa, H. Yamazaki, Y. Nakanishi, T. Fujisawa, K. Takahata, Y. Ueda, W. Kobayashi, Y. Muramoto, H. Ishii, and H. Sanjoh, "Transmission of 214-Gbit/s 4-PAM signal using an ultra-broadband lumped-electrode EADFB laser module," in Optical Fiber Communications Conference and Exhibition (Optica Publishing Group, 2016), paper Th5B.3.
  5. J. Zhang, K. Wang, Y. Wei, L. Zhao, W. Zhou, J. Xiao, B. Liu, X. Xin, F. Zhao, Z. Dong, and J. Yu, "280 Gb/s IM/DD PSPAM-8 transmission over 10 km SSMF at O-band for optical interconnects," in Optical Fiber Communications Conference and Exhibition (Optica Publishing Group, 2020), paper M4F.1.
  6. M. Hossain, J. Wei, F. Pittala, N. Stojanovic, S. Calabro, T. Rahman, G. Bocherer, T. Wettlin, C. Xie, M. Kuschnerov, and S. Pachnicke, "402 Gb/s PAM-8 IM/DD O-band EML transmission," in Proc. European Conference on Optical Communication-ECOC (Bordeaux, France, Sep. 13-16, 2021), paper We1C1.4.
  7. Ethernet Alliance, "Ethernet alliance roadmap," (Ethernet Alliance, Published date: 2022), https://ethernetalliance.org/ethernet-roadmap-2022/ (Accessed date: Mar. 17, 2023).
  8. IEEE Standards Association, "IEEE P802.3bs 200 GbE & 400 GbE task force public area," (IEEE, Published date: Jun. 7, 2023), http://www.ieee802.org/3/bs/public/index.html (Accessed date: Mar. 17, 2023).
  9. S. Bae, J. Park, S. Han, B. Kim, M. Kim, K. Yu, and Y. Chung, "A cost-effective 2-channel OTDM system implemented with sinusoidally modulated light source," IEEE Access 8, 157504-157509 (2020). https://doi.org/10.1109/ACCESS.2020.3016969
  10. J. Park, S. Han, Y. C. Chung, and K. Yu, "300-Gb/s/λ IM/DD transmission using integrated SiP OTDM transmitter," IEEE Photonics Technol. Lett. 35, 529-532 (2023). https://doi.org/10.1109/LPT.2023.3262244
  11. S. Bae, "Dispersion-tolerant 200-Gb/s OTDM-PAM4 system using a simple phase-alternating pulse generator," Opt. Commun. 501, 127383 (2021).
  12. J.-H. Seo, Y.-K. Seo, and W.-Y. Choi, "Spurious-free dynamic range characteristics of the photonic up-converter based on a semiconductor optical amplifier," IEEE Photonics Technol. Lett. 15, 1591-1593 (2003). https://doi.org/10.1109/LPT.2003.818680
  13. C. Caillaud, G. Glastre, F. Lelarge, R. Brenot, S. Bellini, J. Paret, O. Drisse, D. Carpentier, and M. Achouche, "Monolithic integration of a semiconductor optical amplifier and a high-speed photodiode with low polarization dependence loss," IEEE Photonics Technol. Lett. 24, 897-899 (2012). https://doi.org/10.1109/LPT.2012.2190275