Acknowledgement
This work was supported by National Natural Science Foundation of China (Grant No. 52077055), and the Projects of Central Government to Guide Local Scientific and Technological Development (Grant No. 226Z1601G).
References
- Pahlevani, M., Jain, P.: Soft-switching power electronics technology for electric vehicles: a technology review. IEEE J. Emerg. Sel. Topics Ind. Electron. 1(1), 80-90 (2020) https://doi.org/10.1109/JESTIE.2020.2999590
- Mohammed, S.A.Q., Junga, J.-W.: A comprehensive state-of-the art review of wired/wireless charging technologies for battery electric vehicles: Classification/common topologies/future research issues. IEEE Access. 9, 19572-19585 (2021) https://doi.org/10.1109/ACCESS.2021.3055027
- Lee, S.-Y., Lee, W.-S., Lee, J.-Y., Lee, I.-O.: High-efficiency 11 kW bi-directional on-board charger for Evs. J. Power Electron. 22(2), 363-376 (2022) https://doi.org/10.1007/s43236-021-00344-3
- Whitaker, B., et al.: A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices. IEEE Trans. Power Electron. 29(5), 2606-2617 (2014) https://doi.org/10.1109/TPEL.2013.2279950
- Hsieh, G. C., Li, J. C., Liaw, M. H.: A study on full-bridge zero-voltage-switched PWM converter: design and experimentation. Proc. IEEE IECON'93, 1281-1285 (1993)
- Redl, R., Sokal, N.O., Balogh, L.: A novel soft-switching full-bridge DC/DC converter: analysis, design considerations, and experimental results at 1.5 kW, 100 kHz. IEEE Trans. Power Electron. 6(3), 408-418 (1991) https://doi.org/10.1109/63.85909
- Ayyanar, R., Mohan, N.: A novel full-bridge DC-DC converter for battery charging using secondary-side control combines soft switching over the full load range and low magnetics requirement. IEEE Trans. Ind. Appl. 37(2), 559-565 (2001) https://doi.org/10.1109/28.913722
- Jain, P.K., Kang, W., Soin, H., Xi, Y.: Analysis and design considerations of a load and line independent zero voltage switching full bridge DC/DC converter topology. IEEE Trans. Power Electron. 17(5), 649-657 (2002) https://doi.org/10.1109/TPEL.2002.802181
- Borage, M., Tiwari, S., Kotaiah, S.: A passive auxiliary circuit achieves zero-voltage-switching in full-bridge converter over entire conversion range. IEEE Power Electron. Lett. 3(4), 141-143 (2005) https://doi.org/10.1109/LPEL.2005.863601
- Kanamarlapudi, V.R.K., Wang, B., Kandasamy, N.K., So, P.L.: A new ZVS full-bridge DC-DC converter for battery charging with reduced losses over full-load range. IEEE Trans. Ind. Appl. 54(1), 571-579 (2018) https://doi.org/10.1109/TIA.2017.2756031
- Gautam, D., Musavi, F., Edington, M., Eberle, W., Dunford, W.G.: An automotive on-board 3.3 kW battery charger for PHEV application. IEEE Trans. Veh. Technol. 61(8), 3466-3474 (2012) https://doi.org/10.1109/TVT.2012.2210259
- Tran, D.D., Vu, H.N., Yu, S., Choi, W.: A Novel soft-switching full-bridge converter with a combination of a secondary switch and a nondissipative snubber. IEEE Trans. Power Electron. 33(2), 1440-1452 (2018) https://doi.org/10.1109/TPEL.2017.2688580
- Kim, E.S., Joe, K.Y., Kye, M.H., Kim, Y.H., Yoon, B.D.: An improved soft switching PWM FB DC/DC converter for reducing conduction losses. IEEE Trans. Power Electron. 14, 258-264 (1999) https://doi.org/10.1109/63.750178
- Cho, J.G., Baek, J.W., Jeong, C.Y., Rim, G.H.: Novel zero-voltage and zero-current-switching (ZVZCS) full bridge PWM converter using a simple auxiliary circuit. IEEE Trans. Ind. Appl. 35(1), 15-20 (1999) https://doi.org/10.1109/28.740840
- Kim, E.S., Kim, Y.-H.: A ZVZCS PWM FB DC/DC converter using modified energy-recovery snubber. IEEE Trans Ind. Electron. 49(5), 1120-1127 (2002) https://doi.org/10.1109/TIE.2002.803237
- Song, T.T., Huang, N.: A novel zero-voltage and zero-current switching full-bridge PWM converter. IEEE Trans. Power Electron. 20(2), 286-291 (2005) https://doi.org/10.1109/TPEL.2004.843016
- Gu, B., Lai, J.-S., Kees, N., Zheng, C.: Hybrid-switching full-bridge dc-dc converter with minimal voltage stress of bridge rectifier, reduced circulating losses, and filter requirement for electric vehicle battery charges. IEEE Trans. Power Electron. 28(3), 1132-1144 (2013) https://doi.org/10.1109/TPEL.2012.2210565
- Lim, C.Y., Jeong, Y., Moon, G.W.: Phase-shifted full-bridge DC-DC converter with high efficiency and high power density using center-tapped clamp circuit for battery charging in electric vehicles. IEEE Trans. Power Electron. 34(11), 10945-10959 (2019) https://doi.org/10.1109/TPEL.2019.2899960
- Lee, I.: Hybrid PWM-resonant converter for electric vehicle on-board battery chargers. IEEE Trans. Power Electron. 31(5), 3639-3649 (2016) https://doi.org/10.1109/TPEL.2015.2456635
- Gu, B., Lin, C.-Y., Chen, B.F., Dominic, J., Lai, J.-S.: Zero-voltage switching PWM resonant full-bridge converter with minimized circulating losses and minimal voltage stresses of bridge rectifiers for electric vehicle. IEEE Trans. Power Electron. 28(10), 4657-4667 (2013) https://doi.org/10.1109/TPEL.2012.2233762
- Kim, J.H., Lee, I.O., Moon, G.W.: Analysis and design of a hybrid-type converter for optimal conversion efficiency in electric vehicle chargers. IEEE Trans. Ind. Electron. 64(4), 884-893 (2017) https://doi.org/10.1109/TIE.2016.2623261
- Lim, C.-Y., Jeong, Y., Lee, M.-S., Yi, K.-H., Moon, G.-W.: Half bridge integrated phase-shifted full-bridge converter with high efficiency using center-tapped clamp circuit for battery charging systems in electric vehicles. IEEE Trans. Power Electron. 35(5), 4934-4945 (2020) https://doi.org/10.1109/TPEL.2019.2931763
- Guo, S.L., Su, J.H., Lai, J.D., Yu, X.: Analysis and design of a wide-range soft-switching high-efficiency high-frequency-link inverter with dual phase-shift modulation. IEEE Trans. Power Electron. 33(9), 7805-7820 (2018) https://doi.org/10.1109/TPEL.2017.2771765
- Cuk, S.: Step-down converter having a resonant inductor, a resonant capacitor and a hybrid transformer. US Patent 7 915 874, Alexandria (2011)
- Cuk, S., Zhang, Z.: Voltage step-up switching DC-to-DC converter field of the invention. US Patent 7 778 046, Alexandria (2010)