DOI QR코드

DOI QR Code

Exploring scavenger receptor class F member 2 and the importance of scavenger receptor family in prediagnostic diseases

  • Thuy‑Trang T. Vo (Department of Pharmacology, College of Medicine, Chungnam National University) ;
  • Gyeyeong Kong (Department of Pharmacology, College of Medicine, Chungnam National University) ;
  • Chaeyeong Kim (Department of Pharmacology, College of Medicine, Chungnam National University) ;
  • Uijin Juang (Department of Pharmacology, College of Medicine, Chungnam National University) ;
  • Suhwan Gwon (Department of Pharmacology, College of Medicine, Chungnam National University) ;
  • Woohyeong Jung (Department of Pharmacology, College of Medicine, Chungnam National University) ;
  • Huonggiang Nguyen (Department of Pharmacology, College of Medicine, Chungnam National University) ;
  • Seon‑Hwan Kim (Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University) ;
  • Jongsun Park (Department of Pharmacology, College of Medicine, Chungnam National University)
  • Received : 2022.12.31
  • Accepted : 2023.03.14
  • Published : 2023.07.15

Abstract

Scavenger Receptor Class F Member 2 (SCARF2), also known as the Type F Scavenger Receptor Family gene, encodes for Scavenger Receptor Expressed by Endothelial Cells 2 (SREC-II). This protein is a crucial component of the scavenger receptor family and is vital in protecting mammals from infectious diseases. Although research on SCARF2 is limited, mutations in this protein have been shown to cause skeletal abnormalities in both SCARF2-deficient mice and individuals with Van den Ende-Gupta syndrome (VDEGS), which is also associated with SCARF2 mutations. In contrast, other scavenger receptors have demonstrated versatile responses and have been found to aid in pathogen elimination, lipid transportation, intracellular cargo transportation, and work in tandem with various coreceptors. This review will concentrate on recent progress in comprehending SCARF2 and the functions played by members of the Scavenger Receptor Family in pre-diagnostic diseases.

Keywords

Acknowledgement

The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see: http://www.textcheck.com/certifcate/g4Mmp4.

References

  1. Ishii J, Adachi H, Aoki J, Koizumi H, Tomita S, Suzuki T, Tsujimoto M, Inoue K, Arai H (2002) SREC-II, a new member of the scavenger receptor type F family, trans-interacts with SREC-I through its extracellular domain. J Biol Chem 277:39696-39702. https://doi.org/10.1074/jbc.M206140200 
  2. Greaves DR, Gordon S (2005) Thematic review series: the immune system and atherogenesis. Recent insights into the biology of macrophage scavenger receptors. J Lipid Res 46:11-20. https://doi.org/10.1194/jlr.R400011-JLR200 
  3. Horiuchi S, Sakamoto Y, Sakai M (2003) Scavenger receptors for oxidized and glycated proteins. Amino Acids 25:283-292. https://doi.org/10.1007/s00726-003-0029-5 
  4. Brown MS, Goldstein JL (1979) Receptor-mediated endocytosis: insights from the lipoprotein receptor system. Proc Natl Acad Sci U S A 76:3330-3337. https://doi.org/10.1073/pnas.76.7.3330 
  5. Canton J, Neculai D, Grinstein S (2013) Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 13:621-634. https://doi.org/10.1038/nri3515 
  6. Taban Q, Mumtaz PT, Masoodi KZ, Haq E, Ahmad SM (2022) Scavenger receptors in host defense: from functional aspects to mode of action. Cell Communication and Signaling 20:2. https://doi.org/10.1186/s12964-021-00812-0 
  7. Krieger M (1997) The other side of scavenger receptors: pattern recognition for host defense. Curr Opin Lipidol 8:275-280. https://doi.org/10.1097/00041433-199710000-00006 
  8. Kodama T, Reddy P, Kishimoto C, Krieger M (1988) Purification and characterization of a bovine acetyl low density lipoprotein receptor. Proc Natl Acad Sci U S A 85:9238-9242. https://doi.org/10.1073/pnas.85.23.9238 
  9. Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P, Krieger M (1990) Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature 343:531-535. https://doi.org/10.1038/343531a0 
  10. Rohrer L, Freeman M, Kodama T, Penman M, Krieger M (1990) Coiled-coil fbrous domains mediate ligand binding by macrophage scavenger receptor type II. Nature 343:570-572. https://doi.org/10.1038/343570a0 
  11. Asch AS, Barnwell J, Silverstein RL, Nachman RL (1987) Isolation of the thrombospondin membrane receptor. J Clin Invest 79:1054-1061. https://doi.org/10.1172/JCI112918 
  12. Pearson A, Lux A, Krieger M (1995) Expression cloning of dSR-CI, a class C macrophage-specific scavenger receptor from Drosophila melanogaster. Proc Natl Acad Sci U S A 92:4056-4060. https://doi.org/10.1073/pnas.92.9.4056 
  13. Murphy JE, Tedbury PR, Homer-Vanniasinkam S, Walker JH, Ponnambalam S (2005) Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis 182:1-15. https://doi.org/10.1016/j.atherosclerosis.2005.03.036 
  14. PrabhuDas MR, Baldwin CL, Bollyky PL, Bowdish DME, Drickamer K, Febbraio M, Herz J, Kobzik L, Krieger M, Loike J, McVicker B, Means TK, Moestrup SK, Post SR, Sawamura T, Silverstein S, Speth RC, Telfer JC, Thiele GM, Wang XY, Wright SD, El Khoury J (2017) A Consensus definitive classification of scavenger receptors and their roles in Health and Disease. J Immunol 198:3775-3789. https://doi.org/10.4049/jimmunol.1700373 
  15. Moore KJ, Freeman MW (2006) Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol 26:1702-1711. https://doi.org/10.1161/01.ATV.0000229218.97976.43 
  16. Thielens NM, Tedesco F, Bohlson SS, Gaboriaud C, Tenner AJ (2017) C1q: a fresh look upon an old molecule. Mol Immunol 89:73-83. https://doi.org/10.1016/j.molimm.2017.05.025 
  17. Matloubian M, David A, Engel S, Ryan JE, Cyster JG (2000) A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat Immunol 1:298-304. https://doi.org/10.1038/79738 
  18. Korbecki J, Bajdak-Rusinek K, Kupnicka P, Kapczuk P, Siminska D, Chlubek D, Baranowska-Bosiacka I (2021) The role of CXCL16 in the pathogenesis of Cancer and Other Diseases. Int J Mol Sci 22:3490. https://doi.org/10.3390/ijms22073490 
  19. Etzerodt A, Moestrup SK (2013) CD163 and inflammation: biological, diagnostic, and therapeutic aspects. Antioxid Redox Signal 18:2352-2363. https://doi.org/10.1089/ars.2012.4834 
  20. Ibrahim ZA, Armour CL, Phipps S, Sukkar MB (2013) RAGE and TLRs: relatives, friends or neighbours? Mol Immunol 56:739-744. https://doi.org/10.1016/j.molimm.2013.07.008 
  21. Qin YH, Dai SM, Tang GS, Zhang J, Ren D, Wang ZW, Shen Q (2009) HMGB1 enhances the proinflammatory activity of lipopolysaccharide by promoting the phosphorylation of MAPK p38 through receptor for advanced glycation end products. J Immunol 183:6244-6250. https://doi.org/10.4049/jimmunol.0900390 
  22. Liang J, Jiang D, Griffith J, Yu S, Fan J, Zhao X, Bucala R, Noble PW (2007) CD44 is a negative regulator of acute pulmonary inflammation and lipopolysaccharide-TLR signaling in mouse macrophages. J Immunol 178:2469-2475. https://doi.org/10.4049/jimmunol.178.4.2469 
  23. Anastasio N, Ben-Omran T, Teebi A, Ha KC, Lalonde E, Ali R, Almureikhi M, Der Kaloustian VM, Liu J, Rosenblatt DS, Majewski J, Jerome-Majewska LA (2010) Mutations in SCARF2 are responsible for Van Den Ende-Gupta syndrome. Am J Hum Genet 87:553-559. https://doi.org/10.1016/j.ajhg.2010.09.005 
  24. Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, Asplund A, Sjostedt E, Lundberg E, Szigyarto CA, Skogs M, Takanen JO, Berling H, Tegel H, Mulder J, Nilsson P, Schwenk JM, Lindskog C, Danielsson F, Mardinoglu A, Sivertsson A, von Feilitzen K, Forsberg M, Zwahlen M, Olsson I, Navani S, Huss M, Nielsen J, Ponten F, Uhlen M (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 13:397-406. https://doi.org/10.1074/mcp.M113.035600 
  25. Consortium TU (2020) UniProt: the universal protein knowledge-base in 2021. Nucleic Acids Res 49:D480-D489. https://doi.org/10.1093/nar/gkaa1100 
  26. Prabhudas M, Bowdish D, Drickamer K, Febbraio M, Herz J, Kobzik L, Krieger M, Loike J, Means TK, Moestrup SK, Post S, Sawamura T, Silverstein S, Wang XY, El Khoury J (2014) Standardizing scavenger receptor nomenclature. J Immunol 192:1997-2006. https://doi.org/10.4049/jimmunol.1490003 
  27. Wilkinson K, El Khoury J (2012) Microglial scavenger receptors and their roles in the pathogenesis of Alzheimer's disease. Int J Alzheimers Dis 2012:489456. https://doi.org/10.1155/2012/489456 
  28. Wicker-Planquart C, Tacnet-Delorme P, Preisser L, Dufour S, Delneste Y, Housset D, Frachet P, Thielens NM (2021) Insights into the ligand binding specificity of SREC-II (scavenger receptor expressed by endothelial cells). FEBS Open Bio 11:2693-2704. https://doi.org/10.1002/2211-5463.13260 
  29. McDonald-McGinn DM, Sullivan KE, Marino B, Philip N, Swillen A, Vorstman JAS, Zackai EH, Emanuel BS, Vermeesch JR, Morrow BE, Scambler PJ, Bassett AS (2015) 22q11.2 deletion syndrome. Nat Reviews Disease Primers 1:15071. https://doi.org/10.1038/nrdp.2015.71 
  30. Migliavacca MP, Sobreira NL, Antonialli GP, Oliveira MM, Melaragno MI, Casteels I, de Ravel T, Brunoni D, Valle D, Perez AB (2014) Sclerocornea in a patient with van den Ende-Gupta syndrome homozygous for a SCARF2 microdeletion. Am J Med Genet A 164A:1170-1174. https://doi.org/10.1002/ajmg.a.36425 
  31. Hildebrandt CC, Patel N, Graham JM Jr, Bamshad M, Nickerson DA, White JJ, Marvin CT, Miller DE, University of Washington Center for, Mendelian G, Grand KL, Sanchez-Lara PA, Schweitzer D, Al-Zaidan HI, Al Masseri Z, Alkuraya FS, Lin AE (2021) Further delineation of van den Ende-Gupta syndrome: genetic heterogeneity and overlap with congenital heart defects and skeletal malformations syndrome. Am J Med Genet A 185:2136-2149. https://doi.org/10.1002/ajmg.a.62194 
  32. Bedeschi MF, Colombo L, Mari F, Hofmann K, Rauch A, Gentilin B, Renieri A, Clerici D (2010) Unmasking of a recessive SCARF2 mutation by a 22q11.12 de novo deletion in a patient with Van den Ende-Gupta Syndrome. Mol Syndromol 1:239-245. https://doi.org/10.1159/000328135 
  33. Meehan TF, Conte N, West DB, Jacobsen JO, Mason J, Warren J, Chen CK, Tudose I, Relac M, Matthews P, Karp N, Santos L, Fiegel T, Ring N, Westerberg H, Greenaway S, Sneddon D, Morgan H, Codner GF, Stewart ME, Brown J, Horner N, International Mouse Phenotyping C, Haendel M, Washington N, Mungall CJ, Reynolds CL, Gallegos J, Gailus-Durner V, Sorg T, Pavlovic G, Bower LR, Moore M, Morse I, Gao X, Tocchini-Valentini GP, Obata Y, Cho SY, Seong JK, Seavitt J, Beaudet AL, Dickinson ME, Herault Y, Wurst W, de Angelis MH, Lloyd KCK, Flenniken AM, Nutter LMJ, Newbigging S, McKerlie C, Justice MJ, Murray SA, Svenson KL, Braun RE, White JK, Bradley A, Flicek P, Wells S, Skarnes WC, Adams DJ, Parkinson H, Mallon AM, Brown SDM, Smedley D (2017) Disease model discovery from 3,328 gene knockouts by the International mouse phenotyping Consortium. Nat Genet 49:1231-1238. https://doi.org/10.1038/ng.3901 
  34. Birling MC, Yoshiki A, Adams DJ, Ayabe S, Beaudet AL, Bottomley J, Bradley A, Brown SDM, Burger A, Bushell W, Chiani F, Chin HG, Christou S, Codner GF, DeMayo FJ, Dickinson ME, Doe B, Donahue LR, Fray MD, Gambadoro A, Gao X, Gertsenstein M, Gomez-Segura A, Goodwin LO, Heaney JD, Herault Y, de Angelis MH, Jiang ST, Justice MJ, Kasparek P, King RE, Kuhn R, Lee H, Lee YJ, Liu Z, Lloyd KCK, Lorenzo I, Mallon AM, McKerlie C, Meehan TF, Fuentes VM, Newman S, Nutter LMJ, Oh GT, Pavlovic G, Ramirez-Solis R, Rosen B, Ryder EJ, Santos LA, Schick J, Seavitt JR, Sedlacek R, Seisenberger C, Seong JK, Skarnes WC, Sorg T, Steel KP, Tamura M, Tocchini-Valentini GP, Wang CL, Wardle-Jones H, Wattenhofer-Donze M, Wells S, Wiles MV, Willis BJ, Wood JA, Wurst W, Xu Y, Teboul L, Murray SA (2021) A resource of targeted mutant mouse lines for 5,061 genes. Nat Genet 53:416-419. https://doi.org/10.1038/s41588-021-00825-y 
  35. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268-274. https://doi.org/10.1126/science.1133427 
  36. Kim BY, Park MH, Woo HM, Jo HY, Kim JH, Choi HJ, Koo SK (2017) Genetic analysis of parathyroid and pancreatic tumors in a patient with multiple endocrine neoplasia type 1 using whole-exome sequencing. BMC Med Genet 18:106. https://doi.org/10.1186/s12881-017-0465-9 
  37. Kim C, Kong G, Lee H, Tran Q, Vo TT, Kwon SH, Park J, Kim SH, Park J (2022) Scavenger receptor class F member 2 (SCARF2) as a novel therapeutic target in glioblastoma. Toxicol Res 38:249-256. https://doi.org/10.1007/s43188-022-00125-5 
  38. Collins RL, Glessner JT, Porcu E, Niestroj L-M, Ulirsch J, Kellaris G, Howrigan DP, Everett S, Mohajeri K, Nuttle X, Lowther C, Fu J, Boone PM, Ullah F, Samocha KE, Karczewski K, Lucente D, Consortium E, Gusella JF, Finucane H, Matyakhina L, Aradhya S, Meck J, Lal D, Neale BM, Hodge JC, Reymond A, Kutalik Z, Katsanis N, Davis EE, Hakonarson H, Sunyaev S, Brand H and Talkowski ME (2021) A cross-disorder dosage sensitivity map of the human genome. medRxiv:2021.01.26.21250098. https://doi.org/10.1101/2021.01.26.21250098 
  39. Shprintzen RJ (2008) Velo-cardio-facial syndrome: 30 Years of study. Dev Disabil Res Rev 14:3-10. https://doi.org/10.1002/ddrr.2 
  40. Vysotskiy M, Zhong X, Miller-Fleming TW, Zhou D, Autism Working Group of the Psychiatric Genomics C, Bipolar Disorder Working Group of the Psychiatric Genomics C, Schizophrenia Working Group of the Psychiatric, Genomics C, Cox NJ, Weiss LA (2021) Integration of genetic, transcriptomic, and clinical data provides insight into 16p11.2 and 22q11.2 CNV genes. Genome Med 13:172. https://doi.org/10.1186/s13073-021-00972-1 
  41. Overwater E, Marsili L, Baars MJH, Baas AF, van de Beek I, Dulfer E, van Hagen JM, Hilhorst-Hofstee Y, Kempers M, Krapels IP, Menke LA, Verhagen JMA, Yeung KK, Zwijnenburg PJG, Groenink M, van Rijn P, Weiss MM, Voorhoeve E, van Tintelen JP, Houweling AC, Maugeri A (2018) Results of next-generation sequencing gene panel diagnostics including copy-number variation analysis in 810 patients suspected of heritable thoracic aortic disorders. Hum Mutat 39:1173-1192. https://doi.org/10.1002/humu.23565 
  42. Cuthbert GA, Shaik F, Harrison MA, Ponnambalam S, Homer-Vanniasinkam S (2020) Scavenger receptors as biomarkers and therapeutic targets in cardiovascular disease. Cells 9:2453. https://doi.org/10.3390/cells9112453 
  43. Sahebi R, Hassanian SM, Ghayour-Mobarhan M, Farrokhi E, Rezayi M, Samadi S, Bahramian S, Ferns GA, Avan A (2019) Scavenger receptor class B type I as a potential risk stratification biomarker and therapeutic target in cardiovascular disease. J Cell Physiol 234:16925-16932. https://doi.org/10.1002/jcp.28393 
  44. El Khoury J, Hickman SE, Thomas CA, Loike JD, Silverstein SC (1998) Microglia, scavenger receptors, and the pathogenesis of Alzheimer's Disease. Neurobiol Aging 19:S81-S84. https://doi.org/10.1016/S0197-4580(98)00036-0 
  45. Hu F, Jiang X, Guo C, Li Y, Chen S, Zhang W, Du Y, Wang P, Zheng X, Fang X, Li X, Song J, Xie Y, Huang F, Xue J, Bai M, Jia Y, Liu X, Ren L, Zhang X, Guo J, Pan H, Su Y, Yi H, Ye H, Zuo D, Li J, Wu H, Wang Y, Li R, Liu L, Wang X-Y, Li Z (2020) Scavenger receptor-A is a biomarker and efector of rheumatoid arthritis: a large-scale multicenter study. Nat Commun 11:1911. https://doi.org/10.1038/s41467-020-15700-3 
  46. Nakayama M, Kudoh T, Kaikita K, Yoshimura M, Oshima S, Miyamoto Y, Takeya M, Ogawa H (2008) Class A macrophage scavenger receptor gene expression levels in peripheral blood mononuclear cells specifically increase in patients with acute coronary syndrome. Atherosclerosis 198:426-433. https://doi.org/10.1016/j.atherosclerosis.2007.09.006 
  47. Ichimura T, Morikawa T, Kawai T, Nakagawa T, Matsushita H, Kakimi K, Kume H, Ishikawa S, Homma Y, Fukayama M (2014) Prognostic significance of CD204-positive macrophages in upper urinary tract cancer. Ann Surg Oncol 21:2105-2112. https://doi.org/10.1245/s10434-014-3503-2 
  48. Sun Y, Xu S (2018) Tumor-associated CD204-Positive macrophage is a prognostic marker in clinical stage I lung adenocarcinoma. Biomed Res Int 2018:8459193. https://doi.org/10.1155/2018/8459193 
  49. Gracia-Rubio I, Martin C, Civeira F, Cenarro A (2021) SR-B1, a key receptor involved in the progression of cardiovascular disease: a perspective from mice and human genetic studies. Biomedicines. https://doi.org/10.3390/biomedicines9060612 
  50. Feng H, Wang M, Wu C, Yu J, Wang D, Ma J, Han J (2018) High scavenger receptor class B type I expression is related to tumor aggressiveness and poor prognosis in lung adenocarcinoma: a STROBE compliant article. Medicine (Baltimore) 97:e0203. https://doi.org/10.1097/md.0000000000010203 
  51. Shahzad MM, Mangala LS, Han HD, Lu C, Bottsford-Miller J, Nishimura M, Mora EM, Lee JW, Stone RL, Pecot CV, Thanapprapasr D, Roh JW, Gaur P, Nair MP, Park YY, Sabnis N, Deavers MT, Lee JS, Ellis LM, Lopez-Berestein G, McConathy WJ, Prokai L, Lacko AG, Sood AK (2011) Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles. Neoplasia 13:309-319. https://doi.org/10.1593/neo.101372 
  52. Traughber CA, Opoku E, Brubaker G, Major J, Lu H, Lorkowski SW, Neumann C, Hardaway A, Chung Y-M, Gulshan K, Sharif N, Brown JM, Smith JD (2020) Uptake of high-density lipoprotein by scavenger receptor class B type 1 is associated with prostate cancer proliferation and tumor progression in mice. J Biol Chem 295:8252-8261. https://doi.org/10.1074/jbc.ra120.013694 
  53. Hale JS, Otvos B, Sinyuk M, Alvarado AG, Hitomi M, Stoltz K, Wu Q, Flavahan W, Levison B, Johansen ML, Schmitt D, Neltner JM, Huang P, Ren B, Sloan AE, Silverstein RL, Gladson CL, DiDonato JA, Brown JM, McIntyre T, Hazen SL, Horbinski C, Rich JN, Lathia JD (2014) Cancer stem cell-specific scavenger receptor CD36 drives glioblastoma progression. Stem Cells 32:1746-1758. https://doi.org/10.1002/stem.1716 
  54. Haidari S, Troltzsch M, Knosel T, Liokatis P, Kasintsova A, Eberl M, Ortner F, Otto S, Fegg F, Boskov M, Probst FA (2021) Fatty acid receptor CD36 functions as a surrogate parameter for Lymph Node Metastasis in oral squamous cell carcinoma. Cancers (Basel) 13:4125. https://doi.org/10.3390/cancers13164125 
  55. Lai WA, Yeh YT, Lee MT, Wu LS, Ke FC, Hwang JJ (2013) Ovarian granulosa cells utilize scavenger receptor SR-BI to evade cellular cholesterol homeostatic control for steroid synthesis. J Lipid Res 54:365-378. https://doi.org/10.1194/jlr.M030239 
  56. Rivera K, Quinones V, Amigo L, Santander N, Salas-Perez F, Xavier A, Fernandez-Galilea M, Carrasco G, Cabrera D, Arrese M, Busso D, Andia ME, Rigotti A (2021) Lipoprotein receptor SR-B1 deficiency enhances adipose tissue inflammation and reduces susceptibility to hepatic steatosis during diet-induced obesity in mice. Biochim Biophys Acta Mol Cell Biol Lipids 1866:158909. https://doi.org/10.1016/j.bbalip.2021.158909 
  57. Minett T, Classey J, Matthews FE, Fahrenhold M, Taga M, Brayne C, Ince PG, Nicoll JA, Boche D (2016) Microglial immunophenotype in dementia with Alzheimer's pathology. J Neuroinflammation 13:135. https://doi.org/10.1186/s12974-016-0601-z 
  58. Zhang J, Li S, Liu F, Yang K (2022) Role of CD68 in tumor immunity and prognosis prediction in pan-cancer. Sci Rep 12:7844. https://doi.org/10.1038/s41598-022-11503-2 
  59. Shaw DJ, Seese R, Ponnambalam S, Ajjan R (2014) The role of lectin-like oxidised low-density lipoprotein receptor-1 in vascular pathology. Diab Vasc Dis Res 11:410-418. https://doi.org/10.1177/1479164114547704 
  60. Arjuman A, Chandra NC (2013) Effect of IL-10 on LOX-1 expression, signalling and functional activity: an atheroprotective response. Diab Vasc Dis Res 10:442-451. https://doi.org/10.1177/1479164113489042 
  61. Sun X, Fu X, Xu S, Qiu P, Lv Z, Cui M, Zhang Q, Xu Y (2021) OLR1 is a prognostic factor and correlated with immune infiltration in breast cancer. Int Immunopharmacol 101:108275. https://doi.org/10.1016/j.intimp.2021.108275 
  62. Ozturk O, Colak Y, Senates E, Yilmaz Y, Ulasoglu C, Doganay L, Ozkanli S, Oltulu YM, Coskunpinar E, Tuncer I (2015) Increased serum soluble lectin-like oxidized low-density lipoprotein receptor-1 levels in patients with biopsy-proven nonalcoholic fatty liver disease. World J Gastroenterol 21:8096-8102. https://doi.org/10.3748/wjg.v21.i26.8096 
  63. Liu B, Wang Z, Gu M, Zhao C, Ma T, Wang J (2021) GEO data mining identifies OLR1 as a potential biomarker in NSCLC immunotherapy. Front Oncol 11:629333. https://doi.org/10.3389/fonc.2021.629333 
  64. Zani IA, Stephen SL, Mughal NA, Russell D, Homer-Vanniasinkam S, Wheatcroft SB, Ponnambalam S (2015) Scavenger receptor structure and function in health and disease. Cells 4:178-201. https://doi.org/10.3390/cells4020178 
  65. Libby P, Buring JE, Badimon L, Hansson GK, Deanfileld J, Bittencourt MS, Tokgozoglu L, Lewis EF (2019) Atherosclerosis. Nat Rev Dis Primers 5:56. https://doi.org/10.1038/s41572-019-0106-z 
  66. Gudgeon J, Marin-Rubio JL, Trost M (2022) The role of macrophage scavenger receptor 1 (MSR1) in inflammatory disorders and cancer. Front Immunol 13:1012002. https://doi.org/10.3389/fmmu.2022.1012002 
  67. Ramirez-Ortiz ZG, Pendergraft WF, Prasad A, Byrne MH, Iram T, Blanchette CJ, Luster AD, Hacohen N, Khoury JE, Means TK (2013) The scavenger receptor SCARF1 mediates the clearance of apoptotic cells and prevents autoimmunity. Nat Immunol 14:917-926. https://doi.org/10.1038/ni.2670 
  68. Sjostedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C, Oksvold P, Edfors F, Limiszewska A, Hikmet F, Huang J, Du Y, Lin L, Dong Z, Yang L, Liu X, Jiang H, Xu X, Wang J, Yang H, Bolund L, Mardinoglu A, Zhang C, von Feilitzen K, Lindskog C, Ponten F, Luo Y, Hokfelt T, Uhlen M, Mulder J (2020) An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367:eaay5947. https://doi.org/10.1126/science.aay5947 
  69. Patten DA, Wilkinson AL, O'Rourke JM, Shetty S (2020) Prognostic value and potential immunoregulatory role of SCARF1 in hepatocellular carcinoma. Front Oncol 10:565950. https://doi.org/10.3389/fonc.2020.565950 
  70. Li G, Wang Z, Zhang C, Liu X, Yang F, Sun L, Liang J, Hu H, Liu Y, You G, Bao Z, Zhang W, Wang Z, Jiang T (2018) MEGF10, a glioma survival-associated molecular signature, predicts IDH mutation status. Dis Markers 2018:5975216. https://doi.org/10.1155/2018/5975216 
  71. Kurian KM, Haynes HR, Crosby C, Hopkins K, Williams M (2013) IDH mutation analysis in gliomas as a diagnostic and prognostic biomarker. Br J Neurosurg 27:442-445. https://doi.org/10.3109/02688697.2013.771139 
  72. Xing J, Liu Y, Chen T (2018) Correlations of chemokine CXCL16 and TNF-α with coronary atherosclerotic heart disease. Exp Ther Med 15:773-776. https://doi.org/10.3892/etm.2017.5450 
  73. Lin Z, Gong Q, Zhou Z, Zhang W, Liao S, Liu Y, Yan X, Pan X, Lin S, Li X (2011) Increased plasma CXCL16 levels in patients with chronic kidney diseases. Eur J Clin Invest 41:836-845. https://doi.org/10.1111/j.1365-2362.2011.02473.x 
  74. Zhao L, Wu F, Jin L, Lu T, Yang L, Pan X, Shao C, Li X, Lin Z (2014) Serum CXCL16 as a novel marker of renal injury in type 2 diabetes mellitus. PLoS One 9:e87786. https://doi.org/10.1371/journal.pone.0087786 
  75. Abdel-Messeih PL, Alkady MM, Nosseir NM, Tawfik MS (2020) Inflammatory markers in end-stage renal disease patients on haemodialysis. J Med Biochem 39:481-487. https://doi.org/10.5937/jomb0-25120 
  76. Ayyappan P, Harms RZ, Seifert JA, Bemis EA, Feser ML, Deane KD, Demoruelle MK, Mikuls TR, Holers VM, Sarvetnick NE (2020) Heightened levels of antimicrobial response factors in patients with rheumatoid arthritis. Front Immunol 11:427. https://doi.org/10.3389/fmmu.2020.00427 
  77. Manta CP, Leibing T, Friedrich M, Nolte H, Adrian M, Schledzewski K, Krzistetzko J, Kirkamm C, David Schmid C, Xi Y, Stojanovic A, Tonack S, de la Torre C, Hammad S, Offermanns S, Kruger M, Cerwenka A, Platten M, Goerdt S, Geraud C (2022) Targeting of scavenger receptors Stabilin-1 and Stabilin-2 ameliorates atherosclerosis by a plasma proteome switch mediating Monocyte/Macrophage suppression. Circulation 146:1783-1799. https://doi.org/10.1161/circulationaha.121.058615 
  78. Yong J, Huang L, Chen G, Luo X, Chen H, Wang L (2021) High expression of Stabilin-2 predicts poor prognosis in non-small-cell lung cancer. Bioengineered 12:3426-3433. https://doi.org/10.1080/21655979.2021.1943109 
  79. Geraud C, Mogler C, Runge A, Evdokimov K, Lu S, Schledzewski K, Arnold B, Hammerling G, Koch PS, Breuhahn K, Longerich T, Marx A, Weiss C, Damm F, Schmieder A, Schirmacher P, Augustin HG, Goerdt S (2013) Endothelial trans-differentiation in hepatocellular carcinoma: loss of Stabilin-2 expression in peri-tumourous liver correlates with increased survival. Liver Int 33:1428-1440. https://doi.org/10.1111/liv.12262 
  80. Cheng Z, Zhang D, Gong B, Wang P, Liu F (2017) CD163 as a novel target gene of STAT3 is a potential therapeutic target for gastric cancer. Oncotarget 8:87244-87262. https://doi.org/10.18632/oncotarget.20244 
  81. Zhang Y, Huang C, Nie Y, Liu Q, Xiao N, Liu L, Zhu X (2021) Soluble CD163 is a predictor of mortality in patients with decompensated cirrhosis. Front Med (Lausanne) 8:698502. https://doi.org/10.3389/fmed.2021.698502 
  82. Wang J, Guo W, Du H, Yu H, Jiang W, Zhu T, Bai X, Wang P (2014) Elevated soluble CD163 plasma levels are associated with disease severity in patients with hemorrhagic fever with renal syndrome. PLoS One 9:e112127. https://doi.org/10.1371/journal.pone.0112127 
  83. Jude C, Dejica D, Samasca G, Balacescu L, Balacescu O (2013) Soluble CD163 serum levels are elevated and correlated with IL-12 and CXCL10 in patients with long-standing rheumatoid arthritis. Rheumatol Int 33:1031-1037. https://doi.org/10.1007/s00296-012-2459-4 
  84. Emanuele E, D'Angelo A, Tomaino C, Binetti G, Ghidoni R, Politi P, Bernardi L, Maletta R, Bruni AC, Geroldi D (2005) Circulating levels of soluble receptor for advanced glycation end products in Alzheimer disease and vascular dementia. Arch Neurol 62:1734-1736. https://doi.org/10.1001/archneur.62.11.1734 
  85. Falcone C, Emanuele E, D'Angelo A, Buzzi MP, Belvito C, Cuccia M, Geroldi D (2005) Plasma levels of soluble receptor for advanced glycation end products and coronary artery disease in nondiabetic men. Arterioscler Thromb Vasc Biol 25:1032-1037. https://doi.org/10.1161/01.Atv.0000160342.20342.00 
  86. Sternberg Z, Weinstock-Guttman B, Hojnacki D, Zamboni P, Zivadinov R, Chadha K, Lieberman A, Kazim L, Drake A, Rocco P, Grazioli E, Munschauer F (2008) Soluble receptor for advanced glycation end products in multiple sclerosis: a potential marker of disease severity. Mult Scler 14:759-763. https://doi.org/10.1177/1352458507088105 
  87. Sternberg Z, Sternberg D, Drake A, Chichelli T, Yu J, Hojnacki D (2014) Disease modifying drugs modulate endogenous secretory receptor for advanced glycation end-products, a new biomarker of clinical relapse in multiple sclerosis. J Neuroimmunol 274:197-201. https://doi.org/10.1016/j.jneuroim.2014.07.005 
  88. Chen C, Zhao S, Karnad A, Freeman JW (2018) The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol 11:64. https://doi.org/10.1186/s13045-018-0605-5 
  89. Xu H, Niu M, Yuan X, Wu K, Liu A (2020) CD44 as a tumor biomarker and therapeutic target. Experimental Hematol Oncol 9:36. https://doi.org/10.1186/s40164-020-00192-0 
  90. Thapa R, Wilson GD (2016) The importance of CD44 as a stem cell biomarker and therapeutic target in cancer. Stem Cells Int 2016:2087204. https://doi.org/10.1155/2016/2087204 
  91. Naor D, Nedvetzki S (2003) CD44 in rheumatoid arthritis. Arthritis Res Ther 5:105-115. https://doi.org/10.1186/ar746 
  92. Katoh S, Uesaka T, Tanaka H, Matsuhara H, Ohashi-Doi K, Oga T (2022) CD44 is critical for the enhancing effect of hyaluronan in allergen-specific sublingual immunotherapy in a murine model of chronic asthma. Clin Exp Immunol 208:202-211. https://doi.org/10.1093/cei/uxac024 
  93. Camp RL, Scheynius A, Johansson C, Pure E (1993) CD44 is necessary for optimal contact allergic responses but is not required for normal leukocyte extravasation. J Exp Med 178:497-507. https://doi.org/10.1084/jem.178.2.497 
  94. Cuf CA, Kothapalli D, Azonobi I, Chun S, Zhang Y, Belkin R, Yeh C, Secreto A, Assoian RK, Rader DJ, Pure E (2001) The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation. J Clin Invest 108:1031-1040. https://doi.org/10.1172/jci12455 
  95. Li J, Tan Y, Sheng Z, Zhou P, Liu C, Zhao H, Song L, Zhou J, Chen R, Chen Y, Yan H (2021) The association between plasma hyaluronan level and plaque types in ST-segment-elevation myocardial infarction patients. Front Cardiovasc Med 8:628529. https://doi.org/10.3389/fcvm.2021.628529 
  96. Osawa Y, Kawai H, Tsunoda T, Komatsu H, Okawara M, Tsutsui Y, Yoshida Y, Yoshikawa S, Mori T, Yamazoe T, Yoshio S, Oide T, Inui A, Kanto T (2021) Cluster of differentiation 44 promotes liver fibrosis and serves as a biomarker in congestive hepatopathy. Hepatol Commun 5:1437-1447. https://doi.org/10.1002/hep4.1721 
  97. Akbar S, Qadri S, Ashraf S, Parray A, Raza A, Abualainin W, Dermime S, Haik Y (2022) Expression of CD91 in extracellular vesicles: a potential biomarker for the diagnosis of non-small cell lung cancer. Adv Cancer Biol Metastasis 4:100046. https://doi.org/10.1016/j.adcanc.2022.100046 
  98. Nishiwaki H, Niihata K, Kinoshita M, Fujimura M, Kurosawa K, Sakuramachi Y, Takano K, Matsunaga S, Okamura S, Kitatani M, Tsujii S, Hayashino Y, Kurita N (2022) Urinary C-megalin as a novel biomarker of progression to microalbuminuria: a cohort study based on the diabetes distress and Care Registry at Tenri (DDCRT 22). Diabetes Res Clin Pract 186:109810. https://doi.org/10.1016/j.diabres.2022.109810 
  99. Li C, Ding Y, Zhang X, Hua K (2022) Integrated in silico analysis of LRP2 mutations to immunotherapy efficacy in pan-cancer cohort. Discover Oncol 13:65. https://doi.org/10.1007/s12672-022-00528-8 
  100. Spuch C, Antequera D, Pascual C, Abilleira S, Blanco M, Moreno-Carretero MJ, Romero-Lopez J, Ishida T, Molina JA, Villarejo A, Bermejo-Pareja F, Carro E (2015) Soluble megalin is reduced in cerebrospinal fluid samples of Alzheimer's disease patients. Front Cell Neurosci 9:134. https://doi.org/10.3389/fncel.2015.00134 
  101. Gordon S, Neyen C (2016) Scavenger receptors. In: Bradshaw RA, Stahl PD (eds) Encyclopedia of cell biology. Academic-Press, Waltham, pp 727-740. https://doi.org/10.1016/B978-0-12-394447-4.30110-9 
  102. Patel N, Salih MA, Alshammari MJ, Abdulwahhab F, Adly N, Alzahrani F, Elgamal EA, Elkhashab HY, Al-Qattan M, Alkuraya FS (2014) Expanding the clinical spectrum and allelic heterogeneity in van den Ende-Gupta syndrome. Clin Genet 85:492-494. https://doi.org/10.1111/cge.12205 
  103. Karaer D, Karaer K (2022) Two novel variants in SCARF2 gene underlie van den Ende-Gupta syndrome. Am J Med Genet A 188:1881-1884. https://doi.org/10.1002/ajmg.a.62707 
  104. Al-Qattan MM, Andejani DF, Sakati NA, Ramzan K, Imtiaz F (2018) Inclusion of joint laxity, recurrent patellar dislocation, and short distal ulnae as a feature of Van Den Ende-Gupta syndrome: a case report. BMC Med Genet 19:18. https://doi.org/10.1186/s12881-018-0531-y 
  105. Niederhofer KY, Fahiminiya S, Eydoux P, Mawson J, Nishimura G, Jerome-Majewska LA, Patel MS (2016) Diagnosis of Van den Ende-Gupta syndrome: Approach to the Marden-Walker-like spectrum of disorders. Am J Med Genet A 170:2310-2321. https://doi.org/10.1002/ajmg.a.37831