DOI QR코드

DOI QR Code

Oxygen consumption rate to evaluate mitochondrial dysfunction and toxicity in cardiomyocytes

  • Dohee Ahn (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Ryeo‑Eun Go (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Kyung‑Chul Choi (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University)
  • Received : 2023.02.14
  • Accepted : 2023.04.04
  • Published : 2023.07.15

Abstract

The increase in the types and complexity of diseases has led to significant advances in diagnostic techniques and the availability of effective therapies. Recent studies have focused on the role of mitochondrial dysfunction in the pathogenesis of cardiovascular diseases (CVDs). Mitochondria are important organelles in cells that generate energy. Besides the production of adenosine triphosphate (ATP), the energy currency of cells, mitochondria are also involved in thermogenesis, control of intracellular calcium ions (Ca2+), apoptosis, regulation of reactive oxygen species (ROS), and inflammation. Mitochondrial dysfunction has been implicated in several diseases including cancer, diabetes, some genetic diseases, and neurogenerative and metabolic diseases. Furthermore, the cardiomyocytes of the heart are rich in mitochondria due to the large energy requirement for optimal cardiac function. One of the main causes of cardiac tissue injuries is believed to be mitochondrial dysfunction, which occurs via complicated pathways which have not yet been completely elucidated. There are various types of mitochondrial dysfunction including mitochondrial morphological change, unbalanced levels of substances to maintain mitochondria, mitochondrial damage by drugs, and mitochondrial deletion and synthesis errors. Most of mitochondrial dysfunctions are linked with symptoms and diseases, thus we focus on parts of mitochondrial dysfunction about fission and fusion in cardiomyocytes, and ways to understand the mechanism of cardiomyocyte damage by detecting oxygen consumption levels in the mitochondria.

Keywords

Acknowledgement

This research was supported by grants from the Ministry of Food and Drug Safety in 2020 (20183MFDS525). In addition, this work was also supported by the Basic Research Lab Program (2022R1A4A1025557) through the National Research Foundation (NRF) of Korea, funded by the Ministry of Science and ICT.

References

  1. Sotomayor-Flores C, Rivera-Mejias P, Vasquez-Trincado C, Lopez-Crisosto C, Morales PE, Pennanen C, Polakovicova I, Aliaga-Tobar V, Garcia L, Roa JC, Rothermel BA, Maracaja-Coutinho V, Ho-Xuan H, Meister G, Chiong M, Ocaranza MP, Corvalan AH, Parra V, Lavandero S (2020) Angiotensin-(1-9) prevents cardiomyocyte hypertrophy by controlling mitochondrial dynamics via miR-129-3p/PKIA pathway. Cell Death Differ 27:2586-2604. https://doi.org/10.1038/s41418-020-0522-3
  2. Al-Zubaidi U, Liu J, Cinar O, Robker RL, Adhikari D, Carroll J (2019) The spatio-temporal dynamics of mitochondrial membrane potential during oocyte maturation. Mol Hum Reprod 25:695-705. https://doi.org/10.1093/molehr/gaz055
  3. Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, Babenko VA, Zorov SD, Balakireva AV, Juhaszova M, Sollott SJ, Zorov DB (2018) Mitochondrial membrane potential. Anal Biochem 552:50-59. https://doi.org/10.1016/j.ab.2017.07.009
  4. Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, Codogno P, Colombo MI, Cuervo AM, Debnath J, Deretic V, Dikic I, Eskelinen EL, Fimia GM, Fulda S, Gewirtz DA, Green DR, Hansen M, Harper JW, Jaattela M, Johansen T, Juhasz G, Kimmelman AC, Kraft C, Ktistakis NT, Kumar S, Levine B, Lopez-Otin C, Madeo F, Martens S, Martinez J, Melendez A, Mizushima N, Munz C, Murphy LO, Penninger JM, Piacentini M, Reggiori F, Rubinsztein DC, Ryan KM, Santambrogio L, Scorrano L, Simon AK, Simon HU, Simonsen A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Kroemer G (2017) Molecular definitions of autophagy and related processes. EMBO J 36:1811-1836. https://doi.org/10.15252/embj.201796697
  5. Bonora M, Wieckowski MR, Sinclair DA, Kroemer G, Pinton P, Galluzzi L (2019) Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. Nat Rev Cardiol 16:33-55. https://doi.org/10.1038/s41569-018-0074-0
  6. van der Bliek AM, Shen Q, Kawajiri S (2013) Mechanisms of mitochondrial fssion and fusion. Cold Spring Harb Perspect Biol 5:a011072. https://doi.org/10.1101/cshperspect.a011072
  7. Labrousse AM, Zappaterra MD, Rube DA, van der Bliek AM (1999) C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol Cell 4:815-826. https://doi.org/10.1016/s1097-2765(00)80391-3
  8. Pennanen C, Parra V, Lopez-Crisosto C, Morales PE, Del Campo A, Gutierrez T, Rivera-Mejias P, Kuzmicic J, Chiong M, Zorzano A, Rothermel BA, Lavandero S (2014) Mitochondrial fssion is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway. J Cell Sci 127:2659-2671. https://doi.org/10.1242/jcs.139394
  9. Will Y, Dykens JA, Nadanaciva S, Hirakawa B, Jamieson J, Marroquin LD, Hynes J, Patyna S, Jessen BA (2008) Efect of the multitargeted tyrosine kinase inhibitors imatinib, dasatinib, sunitinib, and sorafenib on mitochondrial function in isolated rat heart mitochondria and H9c2 cells. Toxicol Sci 106:153-161. https://doi.org/10.1093/toxsci/kfn157
  10. Ramachandra CJA, Hernandez-Resendiz S, Crespo-Avilan GE, Lin YH, Hausenloy DJ (2020) Mitochondria in acute myocardial infarction and cardioprotection. EBioMedicine 57: https://doi.org/10.1016/j.ebiom.2020.102884
  11. Chistiakov DA, Shkurat TP, Melnichenko AA, Grechko AV, Orekhov AN (2018) The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Ann Med 50:121-127. https://doi.org/10.1080/07853890.2017.1417631
  12. Kim JA, Wei Y, Sowers JR (2008) Role of mitochondrial dysfunction in insulin resistance. Circ Res 102:401-414. https://doi.org/10.1161/CIRCRESAHA.107.165472
  13. Brown DA, Perry JB, Allen ME, Sabbah HN, Staufer BL, Shaikh SR, Cleland JG, Colucci WS, Butler J, Voors AA, Anker SD, Pitt B, Pieske B, Filippatos G, Greene SJ, Gheorghiade M (2017) Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol 14:238-250. https://doi.org/10.1038/nrcardio.2016.203
  14. Sciarretta S, Maejima Y, Zablocki D, Sadoshima J (2018) The Role of Autophagy in the Heart. Annu Rev Physiol 80:1-26. https://doi.org/10.1146/annurev-physiol-021317-121427
  15. Okamoto K (2014) Organellophagy: eliminating cellular building blocks via selective autophagy. J Cell Biol 205:435-445. https://doi.org/10.1083/jcb.201402054
  16. Ashraf G, Schwarz TL (2013) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20:31-42. https://doi.org/10.1038/cdd.2012.81
  17. Onishi M, Yamano K, Sato M, Matsuda N, Okamoto K (2021) Molecular mechanisms and physiological functions of mitophagy. EMBO J 40:e104705. https://doi.org/10.15252/embj.2020104705
  18. Killackey SA, Philpott DJ, Girardin SE (2020) Mitophagy pathways in health and disease. J Cell Biol 219:e202004029. https://doi.org/10.1083/jcb.202004029
  19. Soh JEC, Shimizu A, Molla MR, Zankov DP, Nguyen LKC, Khan MR, Tesega WW, Chen S, Tojo M, Ito Y, Sato A, Hitosugi M, Miyagawa S, Ogita H (2023) RhoA rescues cardiac senescence by regulating Parkin-mediated mitophagy. J Biol Chem 299:102993. https://doi.org/10.1016/j.jbc.2023.102993
  20. Lin L, Wei J, Zhu C, Hao G, Xue J, Zhu Y, Wu R (2023) Sema3A alleviates viral myocarditis by modulating SIRT1 to regulate cardiomyocyte mitophagy. Environ Toxicol 38:1305-1317. https://doi.org/10.1002/tox.23765
  21. Cheng J, Ji M, Jing H, Lin H (2023) DUSP12 ameliorates myocardial ischemia-reperfusion injury through HSPB8-induced mitophagy. J Biochem Mol Toxicol 37:e23310. https://doi.org/10.1002/jbt.23310
  22. Wang B, Nie J, Wu L, Hu Y, Wen Z, Dong L, Zou MH, Chen C, Wang DW (2018) AMPKalpha2 protects against the development of heart failure by enhancing mitophagy via PINK1 phosphorylation. Circ Res 122:712-729. https://doi.org/10.1161/CIRCRESAHA.117.312317
  23. Barazzuol L, Giamogante F, Brini M, Cali T (2020) PINK1/Parkin mediated mitophagy, Ca(2+) signalling, and ER-mitochondria contacts in Parkinson's disease. Int J Mol Sci 21:1772. https://doi.org/10.3390/ijms21051772
  24. Kim A (2014) A panoramic overview of mitochondria and mitochondrial redox biology. Toxicol Res 30:221-234. https://doi.org/10.5487/TR.2014.30.4.221
  25. Eiyama A, Okamoto K (2015) PINK1/Parkin-mediated mitophagy in mammalian cells. Curr Opin Cell Biol 33:95-101. https://doi.org/10.1016/j.ceb.2015.01.002
  26. Nguyen TN, Padman BS, Lazarou M (2016) Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol 26:733-744. https://doi.org/10.1016/j.tcb.2016.05.008
  27. Lee S, Kim JS (2014) Mitophagy: therapeutic potentials for liver disease and beyond. Toxicol Res 30:243-250. https://doi.org/10.5487/TR.2014.30.4.243
  28. Bhatti JS, Bhatti GK (1863) Reddy PH (2017) Mitochondrial dysfunction and oxidative stress in metabolic disorders-a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis 5:1066-1077. https://doi.org/10.1016/j.bbadis.2016.11.010
  29. Harper JW, Ordureau A, Heo JM (2018) Building and decoding ubiquitin chains for mitophagy. Nat Rev Mol Cell Biol 19:93-108. https://doi.org/10.1038/nrm.2017.129
  30. Yamano K, Youle RJ (2013) PINK1 is degraded through the N-end rule pathway. Autophagy 9:1758-1769. https://doi.org/10.4161/auto.24633
  31. Pickrell AM, Youle RJ (2015) The roles of PINK1, parkin, and mitochondrial fdelity in Parkinson's disease. Neuron 85:257-273. https://doi.org/10.1016/j.neuron.2014.12.007
  32. Bingol B, Sheng M (2016) Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radic Biol Med 100:210-222. https://doi.org/10.1016/j.freeradbiomed.2016.04.015
  33. Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13:619-624. https://doi.org/10.1038/nm1574
  34. Taneike M, Yamaguchi O, Nakai A, Hikoso S, Takeda T, Mizote I, Oka T, Tamai T, Oyabu J, Murakawa T, Nishida K, Shimizu T, Hori M, Komuro I, Takuji Shirasawa TS, Mizushima N, Otsu K (2010) Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 6:600-606. https://doi.org/10.4161/auto.6.5.11947
  35. Dutta D, Xu J, Kim JS, Dunn WA Jr, Leeuwenburgh C (2013) Upregulated autophagy protects cardiomyocytes from oxidative stress-induced toxicity. Autophagy 9:328-344. https://doi.org/10.4161/auto.22971
  36. Yapa NMB, Lisnyak V, Reljic B, Ryan MT (2021) Mitochondrial dynamics in health and disease. FEBS Lett 595:1184-1204. https://doi.org/10.1002/1873-3468.14077
  37. Jin JY, Wei XX, Zhi XL, Wang XH, Meng D (2021) Drp1-dependent mitochondrial fssion in cardiovascular disease. Acta Pharmacol Sin 42:655-664. https://doi.org/10.1038/s41401-020-00518-y
  38. Li Y, Xiong Z, Jiang Y, Zhou H, Yi L, Hu Y, Zhai X, Liu J, Tian F, Chen Y (2023) Klf4 deficiency exacerbates myocardial ischemia/reperfusion injury in mice via enhancing ROCK1/DRP1 pathway-dependent mitochondrial fission. J Mol Cell Cardiol 174:115-132. https://doi.org/10.1016/j.yjmcc.2022.11.009
  39. Guo Y, Zhang H, Yan C, Shen B, Zhang Y, Guo X, Sun S, Yu F, Yan J, Liu R, Zhang Q, Zhang D, Liu H, Liu Y, Zhang Y, Li W, Qin J, Lv H, Wang Z, Yuan Y, Yang JF, Zhong YT, Gao S, Zhou B, Liu L, Kong D, Hao X, Hu J, Chen Q (2023) Publisher Correction: Small molecule agonist of mitochondrial fusion repairs mitochondrial dysfunction. Nat Chem Biol 19:530. https://doi.org/10.1038/s41589-023-01294-6
  40. Ikeda Y, Shirakabe A, Maejima Y, Zhai P, Sciarretta S, Toli J, Nomura M, Mihara K, Egashira K, Ohishi M, Abdellatif M, Sadoshima J (2015) Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res 116:264-278. https://doi.org/10.1161/CIRCRESAHA.116.303356
  41. Loson OC, Song Z, Chen H, Chan DC (2013) Fis1, Mf, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 24:659-667. https://doi.org/10.1091/mbc.E12-10-0721
  42. Quiles JM, Gustafsson AB (2022) The role of mitochondrial fission in cardiovascular health and disease. Nat Rev Cardiol 19:723-736. https://doi.org/10.1038/s41569-022-00703-y
  43. Rainbolt TK, Lebeau J, Puchades C, Wiseman RL (2016) Reciprocal Degradation of YME1L and OMA1 Adapts Mitochondrial Proteolytic Activity during Stress. Cell Rep 14:2041-2049. https://doi.org/10.1016/j.celrep.2016.02.011
  44. Gilkerson R, De La Torre P, St Vallier S (2021) Mitochondrial OMA1 and OPA1 as gatekeepers of organellar structure/function and cellular stress response. Front Cell Dev Biol 9:626117. https://doi.org/10.3389/fcell.2021.626117
  45. Chen Y, Liu Y, Dorn GW 2nd (2011) Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res 109:1327-1331. https://doi.org/10.1161/CIRCRESAHA.111.258723
  46. Gu X, Ma Y, Liu Y, Wan Q (2021) Measurement of mitochondrial respiration in adherent cells by Seahorse XF96 Cell Mito Stress Test. STAR Protoc 2:100245. https://doi.org/10.1016/j.xpro.2020.100245
  47. Hynes J, Marroquin LD, Ogurtsov VI, Christiansen KN, Stevens GJ, Papkovsky DB, Will Y (2006) Investigation of drug-induced mitochondrial toxicity using fluorescence-based oxygen-sensitive probes. Toxicol Sci 92:186-200. https://doi.org/10.1093/toxsci/kf208
  48. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435:297-312. https://doi.org/10.1042/BJ20110162
  49. Schmidt CA, Fisher-Wellman KH, Neufer PD (2021) From OCR and ECAR to energy: perspectives on the design and interpretation of bioenergetics studies. J Biol Chem 297:101140. https://doi.org/10.1016/j.jbc.2021.101140
  50. Zhi L, Zhao J, Jafe D, Chen Y, Wang N, Qin Q, Seifert EL, Li C, Zhang H (2022) Measurement of oxygen consumption rate in acute striatal slices from adult mice. J Vis Exp 184:e63379. https://doi.org/10.3791/63379
  51. Iuso A, Repp B, Biagosch C, Terrile C, Prokisch H (2017) Assessing mitochondrial bioenergetics in isolated mitochondria from various mouse tissues using Seahorse XF96 analyzer. Methods Mol Biol 1567:217-230. https://doi.org/10.1007/978-1-4939-6824-4_13
  52. Plitzko B, Loesgen S (2018) Measurement of Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR) in culture cells for assessment of the energy metabolism. Bio Protoc 8:e2850. https://doi.org/10.21769/BioProtoc.2850
  53. Sekar P, Huang DY, Hsieh SL, Chang SF, Lin WW (2018) AMPK-dependent and independent actions of P2X7 in regulation of mitochondrial and lysosomal functions in microglia. Cell Commun Signal 16:83. https://doi.org/10.1186/s12964-018-0293-3
  54. Rana P, Anson B, Engle S, Will Y (2012) Characterization of human-induced pluripotent stem cell-derived cardiomyocytes: bioenergetics and utilization in safety screening. Toxicol Sci 130:117-131. https://doi.org/10.1093/toxsci/kfs233
  55. Smolina N, Bruton J, Kostareva A, Sejersen T (2017) Assaying Mitochondrial Respiration as an Indicator of Cellular Metabolism and Fitness. Methods Mol Biol 1601:79-87. https://doi.org/10.1007/978-1-4939-6960-9_7
  56. Yepez VA, Kremer LS, Iuso A, Gusic M, Kopajtich R, Konarikova E, Nadel A, Wachutka L, Prokisch H, Gagneur J (2018) OCR-Stats: robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. PLoS One 13:e0199938. https://doi.org/10.1371/journal.pone.0199938
  57. Morimoto N, Hashimoto S, Yamanaka M, Nakano T, Satoh M, Nakaoka Y, Iwata H, Fukui A, Morimoto Y, Shibahara H (2020) Mitochondrial oxygen consumption rate of human embryos declines with maternal age. J Assist Reprod Genet 37:1815-1821. https://doi.org/10.1007/s10815-020-01869-5
  58. Force T, Kolaja KL (2011) Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes. Nat Rev Drug Discov 10:111-126. https://doi.org/10.1038/nrd3252
  59. Wallace KB (2007) Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis. Cardiovasc Toxicol 7:101-107. https://doi.org/10.1007/s12012-007-0008-2
  60. Nasci VL, Chuppa S, Griswold L, Goodreau KA, Dash RK, Kriegel AJ (2019) miR-21-5p regulates mitochondrial respiration and lipid content in H9C2 cells. Am J Physiol Heart Circ Physiol 316:H710-H721. https://doi.org/10.1152/ajpheart.00538.2017
  61. Nadanaciva S, Dykens JA, Bernal A, Capaldi RA, Will Y (2007) Mitochondrial impairment by PPAR agonists and statins identified via immunocaptured OXPHOS complex activities and respiration. Toxicol Appl Pharmacol 223:277-287. https://doi.org/10.1016/j.taap.2007.06.003
  62. Will Y, Hynes J, Ogurtsov VI, Papkovsky DB (2006) Analysis of mitochondrial function using phosphorescent oxygen-sensitive probes. Nat Protoc 1:2563-2572. https://doi.org/10.1038/nprot.2006.351
  63. Wang SH, Zhu XL, Wang F, Chen SX, Chen ZT, Qiu Q, Liu WH, Wu MX, Deng BQ, Xie Y, Mai JT, Yang Y, Wang JF, Zhang HF, Chen YX (2021) LncRNA H19 governs mitophagy and restores mitochondrial respiration in the heart through Pink1/Parkin signaling during obesity. Cell Death Dis 12:557. https://doi.org/10.1038/s41419-021-03821-6
  64. Aguer C, Gambarotta D, Mailloux RJ, Mofat C, Dent R, McPherson R, Harper ME (2011) Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells. PLoS One 6:e28536. https://doi.org/10.1371/journal.pone.0028536