DOI QR코드

DOI QR Code

전기자동차용 지로터 펌프의 가상 설계 환경 구축 사례

A Case Study on Virtual Design Environment for xEV Gerotor Pump

  • 투고 : 2023.03.14
  • 심사 : 2023.05.17
  • 발행 : 2023.06.30

초록

본 연구의 목적은 지로터 펌프의 정적인 설계 데이터를 동적 해석모델에 반영하여 다양한 상황에서 성능을 예측할 수 있는 가상 설계 환경을 구축하는데 있다. 가상 설계 환경은 도면 사양을 도출할 수 있는 치형 프로파일 생성 프로그램과 동역학적인 성능을 검토할 수 있는 해석모델의 유기적인 연결을 통해 구축된다. 이를 위한 연구 방법은 다음과 같다. 우선 선행연구를 통해 개발된 치형 프로파일 생성 프로그램을 이용하여 치형을 설계하고 로터 회전 각도에 따른 용적변화를 도출한다. 그리고 멀티도메인 해석소프트웨어인 SimulationX를 통해 지로터 펌프의 챔버별 거동을 분석할 수 있는 해석모델을 개발한다. 이후 해석모델에 치형 설계 프로그램에서 도출된 설계 데이터를 매핑하여 두 프로그램을 연계한다. 마지막으로 연계된 가상 설계 환경의 타당성을 검토하기 위하여 지로터 펌프의 압력과 유량맥동 등의 거동을 구현한다. 결론적으로 지로터 펌프의 가상 설계 환경을 구축하였으며, 이를 통해 설계와 검증에 소요되는 시간과 비용을 절감할 수 있을 것으로 기대된다.

The purpose of this study is to create virtual design environment that can predict performance in various situations by reflecting the static design data of a gerotor pump to a dynamic behavior analysis model. The virtual design environment is created through systematic connection between tooth profile creation program that can present drawing specification and analysis model which can review dynamic performance. The study is carried out in the following manner. First, tooth is designed by using tooth profile creation program developed in the previous study and volume change is derived depending on the rotation angle of rotor. Second, analysis model, which can review the behavior of gerotor pump by chamber, is developed through SimulationX, a software specialized in multi domain analysis. Third, design data from tooth design program is mapped on the analysis model in order to link the two programs. Lastly, behaviors such as the pressure and flow pulsation of gerotor pump are realized in order to review the feasibility of connected virtual design environment. In conclusion, a virtual design environment for the gerotor pump was created, which is expected to reduce the time and cost required for design and verification.

키워드

과제정보

이 연구는 한국과학기술정보연구원의 「수요대응형 지역혁신 생태계 활성화 및 AI 솔루션 실용화 지원체제 구축」 사업의 지원으로 수행되었습니다.

참고문헌

  1. Bae J.H, Lee H.R and Kim C. (2015). "Optimal Design of Gerotor with Combined Profiles (Three-Ellipse and Ellipse-Involute-Ellipse) Using Rotation and Translation Algorithm" Transactions of the Korean Society of Mechanical Engineers A. A. 39(2), 169-177. 
  2. Jang J.S. and Yoon Y.H. (2012) "Automatic Profile Generation System Development for a Gerotor Tooth Design", Journal of the Korean Society for Fluid Power and Construction Equipments, 9(4), 79-87. 
  3. Jung H.S, Lim Y.M and Ham Y.B. (2019). "New Tooth Type Design and Characteristic Analysis for High Density Gerotor Pump" Journal of Drive and Control, 16(4), 80-86. 
  4. Kim J.H. and Kim C. (2006). "Development of an Integrated System for Automated Design of Gerotor Oil Pump", Journal of the Korean Society of Precision Engineering, 23(2), 88-96 
  5. Kwak, H. S., Li, S. H. and Kim, C. (2015) "Optimal Design of Gerotor with Combined Lobe Profiles (Ellipse 1-Elliptical Involute-Ellipse 2)", Transactions of the Korean Society of Mechanical Engineers A, 39(12), 1237-1244.  https://doi.org/10.3795/KSME-A.2015.39.12.1237
  6. Kwak H.S, Li S.H and Kim C. (2016). "Optimal Design of Gerotor (Ellipse1-Elliptical Involute-Ellipse2 Combined Lobe Shape) for Improving Fuel Efficiency and Reducing Noise", Journal of the Korean Society for Precision Engineering. 35 (8), 761-767. 
  7. Lee S.C. (2020). "Design of Gerotor with Pin-tooth Inner Rotor", Tribology and Lubricants, 36(2), 64-67.  https://doi.org/10.9725/KTS.2020.36.2.64
  8. Lozica Ivanovic, Danica Josifovic, Mirko Blagojevic, Blaza Stojanovic and Andreja Ilic (2012). "DETERMINATION OF GEROTOR PUMP THEORETICAL FLOW", COMETa 2012, Jahorina, 243-250.
  9. Noh D. K. (2017). "Development of Hydraulic Drifter using Multi-objective Optimization", Gachon University Graduate School Mechanical Engineering Department Doctorate Thesis. 
  10. Noh D.K, Lee D.W, Lee J.S, and Jang J.S. (2022). "Analysis of Surplus Flow in a Hydraulic System Applied to a Self-propelled Spinach Harvester" Journal of Drive and Control, 19(1), 26-33.  https://doi.org/10.7839/KSFC.2022.19.1.026
  11. Noh D.K, Lee D.W, Lee J.S, and Jang J.S. (2022). "Improving Hydraulic System Design by Analysis Model of a Self-propelled Spinach Harvester", Journal of Drive and Control, 19(1), 69-75.  https://doi.org/10.7839/KSFC.2022.19.1.069
  12. Noh D.K, Lee D.W, Kim T.J, and Jang J.S. (2023). "Developing Analysis Model of Hydraulic System for Dental Chair", Journal of Drive and Control, 20(1), 27-33.  https://doi.org/10.7839/KSFC.2023.20.1.027
  13. Yoon Y.H. and Jang J.S. (2012). "SimulationX, Multi-domain Simulation and Modeling tool for the Design, Analysis, and Optimization of Complex systems" Journal of Drive and Control, 9(1), 56-69  https://doi.org/10.7839/ksfc.2012.9.1.056
  14. Yun H.S., Ham Y.B. and Kim S.D. (2020). Analysis on Torque, Flowrate, and Volumetric Displacement of Gerotor Pump/Motor. Journal of Drive and Control, 17(2), 28-37. https://doi.org/10.7839/KSFC.2020.17.2.028