DOI QR코드

DOI QR Code

Difference of Potential Range Formed at the Anode Between Water Drop Test and Temperature Humidity Bias Test to Evaluate Electrochemical Migration of Solders for Printed Circuit Board

  • Young Ran Yoo (Materials Research Centre for Energy and Clean Technology, Department of Materials Science and Engineering, Andong National University) ;
  • Young Sik Kim (Materials Research Centre for Energy and Clean Technology, Department of Materials Science and Engineering, Andong National University)
  • Received : 2023.06.06
  • Accepted : 2023.06.20
  • Published : 2023.06.30

Abstract

Two types of accelerated tests, Water Drop Test (WDT) and Temperature-Humidity-Bias Test (THBT), can be used to evaluate the susceptibility to electrochemical migration (ECM). In the WDT, liquid water is directly applied to a specimen, typically a patterned conductor like a printed circuit board. Time to failure in the WDT typically ranges from several seconds to several minutes. On the other hand, the THBT is conducted under elevated temperature and humidity conditions, allowing for assessment of design and life cycle factors on ECM. THBT is widely recognized as a more suitable method for reliability testing than WDT. In both test methods, localized corrosion can be observed on the anode. Composition of dendrites formed during the WDT is similar to that formed during THBT. However, there is a lack of correlation between the time to failure obtained from WDT and that obtained from THBT. In this study, we investigated the relationship between electrochemical parameters and time to failure obtained from both WDT and THBT. Differences in time to failure can be attributed to actual anode potential obtained in the two tests.

Keywords

References

  1. IPC-TR-476A, Electrochemical Migration: Electrically Induced Failures in Printed Wiring Assemblies, http://ipc.org
  2. M. Jellesen D. Minzari, U. Rathinavelu, P. Moller, R. Ambat, Investigation of Electronic Corrosion Mechanisms, ECS Transactions, 25, 1 (2010). Doi: https:// doi.org/10.1149/1.3321952
  3. Y. R. Yoo, Ph.D. Dissertation, pp. 41 - 43, Andong National University, Andong (2007).
  4. S. B. Lee, Y. R. Yoo, J. Y. Jung, Y. B. Park, Y. S. Kim, and Y. C. Joo, Proc. 56th Electronic Components and Technology Conf., p. 621, IEEE, San Diego, CA (2006). Doi: https://doi.org/10.1109/ECTC.2006.1645714
  5. Y. R. Yoo and Y. S. Kim, Influence of Corrosion Properties on Electrochemical Migration Susceptibility of SnPb Solders for PCBs, Metals and Materials International, 13, 129 (2007). Doi: https://doi.org/10.1007/BF03027563
  6. S. B. Lee, Y. R. Yoo, J. Y. Jung, Y. B. Park, Y. S. Kim, and Y. C. Joo, Electrochemical migration characteristics of eutectic SnPb solder alloy in printed circuit board, Thin Solid Films, 504, 294 (2006). Doi: https://doi.org/10.1016/j.tsf.2005.09.022
  7. Y. R. Yoo, H. S. Nam, J. Y. Jung, S. B. Lee, Y. B. Park, Y. C. Joo, and Y. S. Kim, Effects of Ag and Cu additions on the electrochemical migration susceptibility of Pb-free solders in Na2SO4 solution, Corrosion Science and Technology, 6, 50 (2007). https://koreascience.kr/article/JAKO200721161743116.page
  8. S. B. Lee, J. Y. Jung, Y. R. Yoo, Y. B. Park, Y. S. Kim, Y. C. Joo, Effect of applied voltage bias on electrochemical migration in eutectic SnPb solder alloy, Corrosion Science and Technology, 6, 282 (2007). https://www.jcst.org/opensource/pdfjs/web/pdf_viewer.htm?code=C00060600282
  9. Y. R. Yoo and Y. S. Kim, Influence of electrochemical properties on electrochemical migration of SnPb and SnBi solders. Metals and Materials International, 16, 739 (2010). Doi: https://doi.org/10.1007/s12540-010-1007-6
  10. Y. R. Yoo and Y. S. Kim, Elucidation of the Relationship between the Electrochemical Migration Susceptibility of SnPb Solders for PCBs and the Composition of the Resulting Dendrites, Metals and Materials International, 16, 613 (2010). Doi: https://doi.org/10.1007/s12540-010-0814-0
  11. T. Takemoto, R. M. Latanision, T. W. Eagar and A. Matsunawa, Electrochemical migration test of solder alloys in pure water, Corrosion Science, 39, 1415 (1997). Doi: https://doi.org/10.1016/S0010-938X(97)00038-3
  12. O. Radovici and B. Popescu, Corrosion and Passivity of Some Pb-Sn Alloys in Media of Different pH, Revue Roumaine de Chemie, 15, 1799 (1970).
  13. H. Tanaka, Factors leading to ionic migration in lead-free solder, ESPEC Technology Report. 14, 1 (2002).
  14. J. Y. Jung, S. B. Lee, H. Y. Lee, Y. C. Joo and Y. B. Park, Electrochemical migration characteristics of eutectic SnPb solder alloy in NaCl and Na2SO4 solutions, Journal of Electronic Materials, 38, 691 (2009). Doi: https://doi.org/10.1007/s11664-008-0636-8
  15. D. Q. Yu, W. Jillek and E. Schmitt, Electrochemical migration of Sn-Pb and lead free solder alloys under distilled water, Journal of Materials Science: Materials in Electronics, 17, 219 (2006). Doi: https://doi.org/10.1007/s10854-006-6764-0
  16. X. He, M. H. Azarian and M. G. Pecht, Evaluation of electrochemical migration on printed circuit boards with lead-free and tin-lead solder, Journal of Electronic Materials, 40, 1921 (2011). Doi: https://doi.org/10.1007/s11664-011-1672-3
  17. G. Hars'anyi, Irregular effect of chloride impurities on migration failure reliability: contradictions or understandable?, Microelectronics Reliability, 39, 1407 (1999). Doi: https://doi.org/10.1016/S0026-2714(99)00079-7
  18. X. Shi, G. Hansen, M. Mills, S. Jungwirth and Y. Zhang, Preserving the value of highway maintenance equipment against roadway deicers: a case study and preliminary cost benefit analysis, Anti-Corrosion Methods and Materials, 63, 1 (2016). Doi: https://doi.org/10.1108/ACMM07-2014-1410
  19. N. K. Othman, F. R. Omar and F. C. Ani, Electrochemical migration and corrosion behaviours of SAC305 reinforced by NiO, Fe2O3, TiO2 nanoparticles in NaCl solution, IOP Conference Series: Materials Science and Engineering, 701, 012044 (2019). Doi: https://doi.org/10.1088/1757-899X/701/1/012044
  20. P. Yi, Kui Xiao, K. Ding, C. Dong and X. Li, Electrochemical Migration Behavior of Copper-Clad Laminate and Electroless Nickel/Immersion Gold Printed Circuit Boards under Thin Electrolyte Layers, Materials, 10, 137 (2017). Doi: https://doi.org/10.3390/ma10020137
  21. B. Medgyes, A. Gharaibeh, G. Harsanyi, B. Pecz, I. Felhosi, Electrochemical corrosion and electrochemical migration characteristics of SAC-1Bi-xMn solder alloys in NaCl solution, Corrosion Science, 213 110965 (2023). Doi: https://doi.org/10.1016/j.corsci.2023.110965
  22. S. B. Lee, M. S. Jung, H. Y. Lee, T. Kang and Y. C. Joo, Effect of bias voltage on the electrochemical migration behaviors of Sn and Pb, IEEE Transactions on Device and Materials Reliability, 9, 483 (2009). Doi: https://doi.org/10.1109/TDMR.2009.2026737
  23. J. A. Jachim, G. B. Freeman and L. J. Turbini, Use of surface insulation resistance and contact angle measurements to characterize the interactions of three water soluble fluxes with FR-4 substrates, IEEE Transactions on Components, Packaging and Manufacturing Technology, Part A, 20, 443 (1997). Doi: https://doi.org/10.1109/96.641513
  24. E. L. Lee, A. S. M. A. Haseeb, W. J. Basirun, Y. H. Wong, M. F. M. Sabri and B. Y. Low, In-situ study of electrochemical migration of tin in the presence of bromide ion, Scientific Reports, 11, 15768 (2021). Doi: https://doi.org/10.1038/s41598-021-95276-0
  25. X. Liao, F. Cao, L. Zheng, W. Liu, A. Chen, J. Zhang and C. Cao, Corrosion behavior of copper under chloride containing thin electrolyte layer, Corrosion Science, 53, 3289 (2011). Doi: https://doi.org/10.1016/j.corsci.2011.06.004
  26. C. W. See, M. Z. Yahaya, H. Haliman, A. A. Mohamad, Corrosion Behavior of Corroded Sn-3.0Ag-0.5Cu Solder Alloy, Procedia Chemistry, 19, 847 (2016). Doi: https://doi.org/10.1016/j.proche.2016.03.112
  27. IPC-TM-650 2.6.14.1 Electrochemical Migration Resistance Test, http://ipc.org (2000).