DOI QR코드

DOI QR Code

Ball-milling Induced Changes in the Crystallinity of Quartz and Wear of Milling Media

볼 밀링에 의한 석영의 결정도 변화와 밀링 매체의 마모의 영향

  • Jin Jung Kweon (School of Earth and Environmental Sciences, Seoul National University) ;
  • Hoon Khim (School of Earth and Environmental Sciences, Seoul National University) ;
  • Sung Keun Lee (School of Earth and Environmental Sciences, Seoul National University)
  • 권진중 (서울대학교 지구환경과학부) ;
  • 김훈 (서울대학교 지구환경과학부) ;
  • 이성근 (서울대학교 지구환경과학부)
  • Received : 2023.03.19
  • Accepted : 2023.05.09
  • Published : 2023.06.30

Abstract

Quartz (SiO2) is among the major rock-forming minerals in the earth's crust. The atomistic structures of SiO2 may evolve during diverse frictional processes. The reduction of friction of quartz-rock accompanied by its amorphization, hydration, and formation of silica gel provides mineralogical insights into earthquakes and related phenomena. Ball milling, together with rotary shear experiments have been useful to infer the atomic origins of such processes. In this study, optimal experimental conditions for ball milling for amorphization of SiO2 were determined by taking into account various process variables. The crystallinity of SiO2 gradually decreased and became amorphous as the ball milling time increased at a high milling speed. The degree of wear of the milling media and its effect on the amorphization of SiO2 were analyzed using distinct milling materials (zirconia, stainless steel). The amount of ball wear increased with increasing milling time. Furthermore, the worn stainless steel particles from balls tend to interact with amorphized SiO2 to form Si-O-Cr. These results aid in understanding the process of atomistic structural changes caused by ball milling of divserse materials with relatively high hardness, such as SiO2, and understanding various geological friction processes.

석영(SiO2)은 지각의 암석을 형성하는 주요 광물 중의 하나이다. SiO2의 원자 구조는 다양한 마찰 과정에서 변화할 수 있다. 비정질화, 수화 및 실리카겔 형성을 수반하는 석영 암석의 마찰 감소는 지진 및 관련 현상에 대한 광물학적 통찰력을 제공한다. 볼 밀링과 회전 전단 실험을 이용하여 상기 현상의 광물학적 기원이 밝혀지고 있다. 본 연구에서는 밀링 과정에서의 다양한 변수를 고려하여 SiO2의 비정질화를 위한 볼 밀링의 최적 실험 조건을 결정하였다. 높은 밀링 속도에서 볼 밀링 시간이 증가함에 따라 SiO2의 결정도는 점차 감소하여 비정질화되었다. 밀링 매체의 마모 정도와 SiO2의 비정질화에 미치는 영향은 서로 다른 밀링 재료(ZrO2, stainless steel)를 사용하여 분석하였다. 밀링 시간이 증가함에 따라 볼의 마모량이 증가하였다. 또한 볼에서 마모된 스테인리스스틸 입자는 비정질화되는 SiO2와 상호작용하여 Si-O-Cr을 형성하는 경향이 있다. 이러한 결과는 SiO2와 같이 비교적 경도가 높은 다양한 물질들의 볼 밀링에 의한 원자 구조의 변화 과정을 이해하고, 다양한 지질학적 마찰 과정을 이해하는 데 도움이 될 것이다.

Keywords

Acknowledgement

본 연구는 한국연구재단 리더연구사업(NRF-2020R1A3B2079815)의 지원을 받아 수행되었습니다. SiO2와 지르코니아와의 상호작용에 대한 지질학적 의미에 대하여 논의하여 준 이정재 박사님에게 감사드립니다. 본 연구는 2013년 7월에 서울대 화학생물공학부의 오승모 교수님과 이재길 연구원님의 리튬 이온 배터리의 음극 물질 합성과 NMR분석 토의에서 기원하였으며 이에 감사드립니다. 논문을 보완할 수 있도록 검토하고 제안해주신 익명의 심사위원 두 분께 감사드립니다.

References

  1. Bernardes, A.A., Radtke, C., Alves, M.d.C.M., Baibich, I.M., Lucchese, M. and dos Santos, J.H.Z., 2014, Synthesis and characterization of SiO2-CrO3, SiO2-MoO3, and SiO2-WO3 mixed oxides produced using the non-hydrolytic sol-gel process. Journal of Sol-Gel Science and Technology, 69, 72-84. https://doi.org/10.1007/s10971-013-3188-1
  2. Chang, W.-S., Park, C.-M., Kim, J.-H., Kim, Y.-U., Jeong, G. and Sohn, H.-J., 2012, Quartz (SiO2): a new energy storage anode material for Li-ion batteries. Energy & Environmental Science, 5, 6895-6899. https://doi.org/10.1039/c2ee00003b
  3. Cody, G.D., Mysen, B.O. and Lee, S.K., 2005, Structure vs. composition: A solid-state 1 H and 29Si NMR study of quenched glasses along the Na2O-SiO2-H2O join. Geochimica et Cosmochimica Acta, 69, 2373-2384. https://doi.org/10.1016/j.gca.2004.11.012
  4. del Monte, F., Larsen, W. and Mackenzie, J.D., 2000, Chemical interactions promoting the ZrO2 tetragonal stabilization in ZrO2-SiO2 binary oxides. Journal of the American Ceramic Society, 83, 1506-1512. https://doi.org/10.1111/j.1151-2916.2000.tb01418.x
  5. Devine, R.A.B., 1993, Ion implantation- and radiation-induced structural modifications in amorphous SiO2. Journal of Non-Crystalline Solids, 152, 50-58. https://doi.org/10.1016/0022-3093(93)90443-2
  6. Edalati, K., Toh, S., Ikoma, Y. and Horita, Z., 2011, Plastic deformation and allotropic phase transformations in zirconia ceramics during high-pressure torsion. Scripta Materialia, 65, 974-977. https://doi.org/10.1016/j.scriptamat.2011.08.024
  7. Kim, J.W., Lee, B.H., Kim, J.C. and Kim, H.N., 2018, Particle size analysis of nano-sized talc prepared by mechanical milling using high-energy ball mill. Journal of the Mineralogical Society of Korea, 31, 47-55. https://doi.org/10.9727/jmsk.2018.31.1.47
  8. Kim, H.N., Kim, J.W., Kim, M.S., Lee, B.H. and Kim, J.C., 2019, Effects of ball size on the grinding behavior of talc using a high-energy ball mill. Minerals, 9, 668.
  9. Kim, H.N., Kim, J.W., So, B.-D., Keehm, Y., Lee, B.H. and Kim, J.C., 2022, Formation of talc fault gouge analog using high-energy ball mill. Geosciences Journal, 26, 703-713. https://doi.org/10.1007/s12303-022-0012-3
  10. Kweon, J.J., Kim, H.-I., Lee, S.-H., Kim, J.Y. and Lee, S.K., 2022, Quantitative probing of hydrogen environments in quasicrystals by high-resolution NMR spectroscopy. Acta Materialia, 226, 117657.
  11. Kweon, J.J., Khim, H. and Lee, S.K., Quantitative atomistic environments in deformation of SiO2 probed by NMR. in preparation.
  12. Lee, J. and Lee, S.K., 2022, Probing the homogeneous distribution of sodium atoms in silicate glasses. Acta Materialia, 241, 118413.
  13. Lee, S. and Lee, S.K., 2021, Effect of lead content on atomic structures of Pb-bearing sodium silicate glasses: A view from 29Si NMR spectroscopy. Korean Journal of Mineralogy and Petrology, 34, 157-167. https://doi.org/10.22807/KJMP.2021.34.3.157
  14. Lee, S.K., Han, R., Kim, E.J., Jeong, G.Y., Khim, H. and Hirose, T., 2017, Quasi-equilibrium melting of quartzite upon extreme friction. Nature Geoscience, 10, 436-441. https://doi.org/10.1038/ngeo2951
  15. Lee, S.-S. and Park, C.-M., 2018, Amorphous silicon dioxide-based composites for high-performance Li-ion battery anodes. Electrochimica Acta, 284, 220-225. https://doi.org/10.1016/j.electacta.2018.07.160
  16. Lhee, J., Kim, Y.-H., Lee, A.C., Kim, E.J., Lee, S. and Lee, S.K., 2022, Pressure-load calibration of multi-anvil press at ambient temperature through structural change in cold compressed amorphous pyrope. Korean Journal of Mineralogy and Petrology, 35, 65-73.
  17. Moser, N.H., Gross, T.S. and Korkolis, Y.P., 2014, Martensite formation in conventional and isothermal tension of 304 austenitic stainless steel measured by x-ray diffraction. Metallurgical and Materials Transactions A, 45A, 4891-4896. https://doi.org/10.1007/s11661-014-2422-y
  18. Nakamura, Y., Muto, J., Nagahama, H., Shimizu, I., Miura, T. and Arakawa, I., 2012, Amorphization of quartz by friction: Implication to silica-gel lubrication of fault surfaces. Geophysical Research Letters, 39, L21303.
  19. Power, W.L. and Tullis, T.E., 1989, The relationship between slickenside surfaces in fine-grained quartz and the seismic cycle. Journal of Structural Geology, 11, 879-893. https://doi.org/10.1016/0191-8141(89)90105-3
  20. Stebbins, J.F. and Xue, X., 2014, NMR spectroscopy of inorganic earth materials. Reviews in Mineralogy and Geochemistry, 78, 605-653. https://doi.org/10.2138/rmg.2014.78.15
  21. Tkacova, K., Stevulova, N., Lipka, J. and Sepelak, V., 1995, Contamination of quartz by iron in energy-intensive grinding in air and liquids of various polarity. Powder Technology, 83, 163-171. https://doi.org/10.1016/0032-5910(94)02953-L
  22. Toro, G.D., Goldsby, D.L. and Tullis, T.E., 2004, Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature, 427, 436-439. https://doi.org/10.1038/nature02249