DOI QR코드

DOI QR Code

N2O 분해를 위한 γ-Al2O3 촉매에 관한 연구

A study on γ-Al2O3 Catalyst for N2O Decomposition

  • Eun-Han Lee (High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Tae-Woo Kim (High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Segi Byun (High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Doo-Won Seo (High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Hyo-Jung Hwang (High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Jueun Baek (High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Eui-Soon Jeong (UNISEM) ;
  • Hansung Kim (Department of Chemical and Biological Engineering, Yonsei University) ;
  • Shin-Kun Ryi (High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research (KIER))
  • 투고 : 2023.04.17
  • 심사 : 2023.05.22
  • 발행 : 2023.06.30

초록

직접촉매분해기술은 반도체 및 디스플레이 산업에서 아산화질소(N2O)의 배출을 완화할 수 있는 유망한 기술이다. 본 연구는 7대 온실가스 중에 하나인 N2O 직접촉매분해를 위한 γ-Al2O3 촉매에 관한 것이다. 실험에 사용한 γ-Al2O3 촉매는 뵘석 분말을 사용하여 압출 성형하여 제조하였으며, 반응은 직경 약 5 mm 크기로 분쇄한 촉매를 직경 25.4 mm (1인치) 반응기를 사용하여 수행하였다. N2O 농도는 약 1%가 되도록 공급하였으며, 온도는 550-750 ℃, 압력은 상압, GHSV는 1800-2000 h-1에서 촉매반응 특성을 확인하였다. 분위기 가스로는 질소, 공기 그리고 공기+수분을 공급하여 N2O 분해 특성과 산소의 영향 및 스팀의 영향을 확인하였다. 촉매 내구성은 N2 분위기에서 수행하였는데, 700 ℃에서 350 시간 동안 연속 운전을 통해 확인하였다. 실험결과 불활성 분위기(N2)일 경우 700 ℃에서 N2O 분해율이 100%에 가까운 수준까지 도달함을 확인하였고, 공기와 수분을 공급할 경우 분해율이 낮아짐을 확인하였다. 내구성 실험 결과 350 시간동안 촉매성능저하는 없었다. 따라서 뵘석 분말로 제조한 γ-Al2O3 촉매는 N2O 분해 특성에 우수할 뿐만 아니라 내구성 또한 우수하여 전자 산업을 비롯하여 질산제조공정 등 산소와 수분이 존재하는 경우에도 적용 가능할 것으로 기대한다.

Direct catalytic decomposition is a promising method for controlling the emission of nitrous oxide (N2O) from the semiconductor and display industries. In this study, a γ-Al2O3 catalyst was developed to reduce N2O emissions by a catalytic decomposition reaction. The γ-Al2O3 catalyst was prepared by an extrusion method using boehmite powder, and a N2O decomposition test was performed using a catalyst reactor that was approximately 25.4 mm (1 in) in diameter packed with approximately 5 mm of catalysts. The N2O decomposition tests were carried out with approximately 1% N2O at 550 to 750 ℃, an ambient pressure, and a GHSV=1800-2000 h-1. To confirm the N2O decomposition properties and the effect of O2 and steam on the N2O decomposition, nitrogen, air, and air and steam were used as atmospheric gases. The catalytic decomposition tests showed that the 1% N2O had almost completely disappeared at 700 ℃ in an N2 atmosphere. However, air and steam decreased the conversion rate drastically. The long term stability test carried out under an N2 atmosphere at 700 ℃ for 350 h showed that the N2O conversion rate remained very stable, confirming no catalytic activity changes. From the results of the N2O decomposition tests and long-term stability test, it is expected that the prepared γ-Al2O3 catalyst can be used to reduce N2O emissions from several industries including the semiconductor, display, and nitric acid manufacturing industry.

키워드

과제정보

본 연구는 산업통상자원부, 한국산업기술진흥원의 월드클래스플러스사업 (P0017165)을 통하여 수행하였습니다.

참고문헌

  1. Subramaniam, V. and May, C. Y., "Greenhouse gas emissions for the production of crude palm kernel oil-a gate-to-gate case study," J. Oil Palm Res., 24, 1511 (2012).
  2. Han, S.-H. Seon, H. S. Shin, P.-K., and Park, D. W., "Conversion of SF6 by thermal plasma at atmospheric pressure," Proceeding of ISPC-19, 460(6), (2009).
  3. Shen, Q., Li, L., Li, J., Tian, H., and Hao, Z., "A study on N2O catalytic decomposition over Co/MgO catalysts," J. Hazard. Mater., 163(2-3), 1332-1337 (2009). https://doi.org/10.1016/j.jhazmat.2008.07.104
  4. You, Y. Chang, H., Ma, L., Guo, L., Qin, X. Li, J., and Li, J., "Enhancement of N2O decomposition performance by N2O pretreatment over Ce-Co-O catalyst," Chem. Eng. J., 347, 184-192 (2018). https://doi.org/10.1016/j.cej.2018.04.081
  5. Lee, S.-J., Ryu, I.-S., Kim, B.-M., and Moon, S.-H., "A review of the current application of N2O emission reduction in CDM projects," Int. J. Greenhouse Gas Control, 5(1), 167-176 (2011). https://doi.org/10.1016/j.ijggc.2010.07.001
  6. Hu, X., Zhang, E., Li, W., Wu, L., Zhou, Y., Zhang, H., and Dong, C., "Study on the Catalytic Decomposition Reaction of N2O on MgO (100) in SO2 and CO Environments," Appl. Sci., 12(10), 5034-5045 (2022). https://doi.org/10.3390/app12105034
  7. Konsolakis, M., "Recent advances on nitrous oxide (N2O) decomposition over non-noble-metal oxide catalysts: catalytic performance, mechanistic considerations, and surface chemistry aspects," ACS Catal., 5(11), 6397-6421 (2015). https://doi.org/10.1021/acscatal.5b01605
  8. Lee, H. M., Yun, J. G., and Hong, J. G., "A Study of Nitrous Oxide Thermal Decomposition and Reaction Rate in High Temperature Inert Gas," J. Ilass-Korea, 25(3), 132-138 (2020).
  9. Giecko, G., Borowiecki, T., Gac, W., and Kruk, J., "Fe2O3/Al2O3 catalysts for the N2O decomposition in the nitric acid industry," Catal. Today, 137(2-4), 403-409 (2008). https://doi.org/10.1016/j.cattod.2008.02.008
  10. Jeon, S. G., "R&D Trends of N2O Abatement Technology and Catalyst," KIC News, 19(5), 33-44 (2016).
  11. Park, Y.-B., Kang, J.-K., and Rhee, S.-W., "Effect of N2O/SiH4 ratio on the properties of low-temperature silicon oxide films from remote plasma chemical vapour deposition," Thin Solid Films, 280(1-2), 43-50 (1996). https://doi.org/10.1016/0040-6090(95)08191-7
  12. Kim, D. K., Park, Y. K., Biswas, S., and Lee, C., "Removal efficiency of organic contaminants on Si wafer surfaces by the N2O ECR plasma technique," Mater. Chem. Phys., 91(2-3), 490-493 (2005). https://doi.org/10.1016/j.matchemphys.2004.12.015
  13. Ryu, J.-Y., Choi, C.-Y., Kim, J.-B., Lee, S.-J., Kim, S.-G., Kwak, H.-S., and Yun, Y.-M., "Destruction of NF3 Emitted from Semiconductor Process by Electron Beam Technology," J. Korean Soc. Environ. Eng., 34(6), 391-396 (2012). https://doi.org/10.4491/KSEE.2012.34.6.391
  14. Wang, Y.-F., Wang, L.-C., Shih, M., and Tsai, C.-H., "Effects of experimental parameters on NF3 decomposition fraction in an oxygen-based RF plasma environment," Chemosphere, 57(9), 1157-1163 (2004). https://doi.org/10.1016/j.chemosphere.2004.08.026
  15. https://www.kiet.re.kr/research/economyDetailView?detail_no=2771&year=&month=&stype=&sval= (accessed des. 2022).
  16. Davidson, E. A. and Kanter, D., "Inventories and scenarios of nitrous oxide emissions," Environ. Res. Lett., 9(10), 105012-105024 (2014). https://doi.org/10.1088/1748-9326/9/10/105012
  17. Kapteijn, F., Rodriguez-Mirasol, J., and Moulijn, J. A., "Heterogeneous catalytic decomposition of nitrous oxide," Appl. Catal. B: Environ., 9(1-4), 25-64 (1996). https://doi.org/10.1016/0926-3373(96)90072-7
  18. Hu, X., Wang, Y., Wu, R., and Zhao, Y., "Graphitic carbon nitride-supported cobalt oxides as a potential catalyst for decomposition of N2O," Appl. Surf. Sci., 538, 148157 (2021).
  19. Hinokuma, S., Iwasa, T., Kon, Y., Taketsugu, T., and Sato, K., "N2O decomposition properties of Ru catalysts supported on various oxide materials and SnO2," Sci. Rep., 10(1), 21605-21614 (2020). https://doi.org/10.1038/s41598-020-78744-x
  20. Xia, H., Sun, K., Liu, Z., Feng, Z., Ying, P., and Li, C., "The promotional effect of NO on N2O decomposition over the bi-nuclear Fe sites in Fe/ZSM-5," J. Catal., 270(1), 103-109 (2010). https://doi.org/10.1016/j.jcat.2009.12.014
  21. Abu-Zied, B. M., Schwieger, W., and Unger, A., "Nitrous oxide decomposition over transition metal exchanged ZSM-5 zeolites prepared by the solid-state ion-exchange method," Appl. Catal. B: Environ., 84(1-2), 277-288 (2008). https://doi.org/10.1016/j.apcatb.2008.04.004
  22. Tzitzios V. K. and Georgakilas, V., "Catalytic reduction of N2O over Ag-Pd/Al2O3 bimetallic catalysts," Chemosphere, 59(6), 887-891 (2005). https://doi.org/10.1016/j.chemosphere.2004.11.021
  23. Parres-Esclapez, S., Illan-Gomez, M. J., Lecea, C. S.-M. de, and Bueno-Lopez, A., "On the importance of the catalyst redox properties in the N2O decomposition over alumina and ceria supported Rh, Pd and Pt," Appl. Catal. B: Environ., 96(3-4), 370-378 (2010). https://doi.org/10.1016/j.apcatb.2010.02.034
  24. Liu, Z., He, F., Ma, L., and Peng, S., "Recent Advances in Catalytic Decomposition of N2O on Noble Metal and Metal Oxide Catalysts," Catal. Surv., 20(3), 121-132 (2016). https://doi.org/10.1007/s10563-016-9213-y
  25. Satsuma, A., Maeshima, H., Watanabe, K., Suzuki, K., and Hattori, T., "Effects of methane and oxygen on decomposition of nitrous oxide over metal oxide catalysts," Catal. today, 63(2-4), 347-353 (2000). https://doi.org/10.1016/S0920-5861(00)00478-8
  26. Xu, M. X., Wang, H. X., Ouyang, H. D., Zhao, L., and Lu, Q., "Direct catalytic decomposition of N2O over bismuth modified NiO catalysts," J. Hazard. Mater., 401, 123334 (2021).
  27. Konsolakis, M., Carabineiro, S. A. C., Papista, E., Marnellos, G. E., Tavares, P. B., Moreira, J. A., Romaguera-Barcelay, Y., and Figueiredo, J. L., "Effect of preparation method on the solid state properties and the deN2O performance of CuO-CeO2 oxides," Catal. Sci. Technol., 5(7), 3714-3727 (2015). https://doi.org/10.1039/C5CY00343A
  28. Hussain, M., Fino, D., and Russo, N., "N2O decomposition by mesoporous silica supported Rh catalysts," J. Hazard. Mater., 211-212, 255-265 (2012). https://doi.org/10.1016/j.jhazmat.2011.08.024
  29. Pacultova, K., Obalova, L., Kovanda, F., and Jiratova, K., "Catalytic reduction of nitrous oxide with carbon monoxide over calcined Co-Mn-Al hydrotalcite," Catal. today, 137(2-4), 385-389 (2008). https://doi.org/10.1016/j.cattod.2007.11.062
  30. Obalova, L., Maniak, G., Karaskova, K., Kovanda, F., and Kotarba, A., "Electronic nature of potassium promotion effect in Co-Mn-Al mixed oxide on the catalytic decomposition of N2O," Catal. Commun., 12(12), 1055-1058 (2011). https://doi.org/10.1016/j.catcom.2011.03.017
  31. Sui, C., Yuan, F., Zhang, Z., Zhang, C., Niu, X., and Zhu, Y., "Effect of Ru Species on N2O Decomposition over Ru/Al2O3 Catalysts," Catalysts, 6(11), 173-191 (2016). https://doi.org/10.3390/catal6110173
  32. Lucentini, I., Garcia, X., Vendrell, X., and Llorca, J., "Review of the Decomposition of Ammonia to Generate Hydrogen," Ind. Eng. Chem. Res., 60(51), 18560-18611 (2021). https://doi.org/10.1021/acs.iecr.1c00843
  33. Perez-Ramírez, J., Kapteijn, F., Schoffel, K., and Moulijn, J. A., "Formation and control of N2O in nitric acid production," Applied Catalysis B: Environmental, 44(2), 117-151 (2003). https://doi.org/10.1016/S0926-3373(03)00026-2
  34. Niki, Y., Nitta, Y., Sekiguchi, H., and Hirata, K., "Emission and combustion characteristics of diesel engine fumigated with ammonia," Internal Combustion Engine Division Fall Technical Conference, American Society of Mechanical Engineers, ICEF, 2018-9634 (2018).
  35. Satsuma, A., Maeshima, H., Watanabe, K., and Hattori, T., "Effect of oxygen on decomposition of nitrous oxide over various metal oxide catalysts," Energy Convers. Manage., 42(15-17), 1997-2003 (2001). https://doi.org/10.1016/S0196-8904(01)00057-7
  36. Tursun, M., Wang, X., Zhang, F., and Yu, H., "Bi-Co3O4 catalyzing N2O decomposition with strong resistance to CO2," Catal. Commun., 65, 1-5 (2015). https://doi.org/10.1016/j.catcom.2015.02.013
  37. El-Bahy, Z., Ohnishi, R., and Ichikawa, M., "Hydrolysis of CF4 over alumina-based binary metal oxide catalysts," Appl. Catal. B: Environ., 40(2), 81-91 (2003). https://doi.org/10.1016/S0926-3373(02)00143-1
  38. Pachatouridou, E., Papista, E., Delimitis, A., Vasiliades, M. A., Efstathiou, A. M., Amiridis, M. D., Alexeev, O. S., Bloom, D. G. E., Marnellos, Konsolakis, M., and Iliopoulou, E., "N2O decomposition over ceria-promoted Ir/Al2O3 catalysts: The role of ceria," Appl. Catal. B: Environ., 187, 259-268 (2016). https://doi.org/10.1016/j.apcatb.2016.01.049
  39. Kim, S. S., Lee, S. J., and Hong, S. C., "Effect of CeO2 addition to Rh/Al2O3 catalyst on N2O decomposition," Chem. Eng. J., 169(1-3), 173-179 (2011). https://doi.org/10.1016/j.cej.2011.03.001
  40. Ohnishi, C., Asano, K., Iwamoto, S., Chikama, K., and Inoue, M., "Alkali-doped Co3O4 catalysts for direct decomposition of N2O in the presence of oxygen," Catal. Today, 120(2), 145-150 (2007). https://doi.org/10.1016/j.cattod.2006.07.042
  41. Zhang, R., Hua, C., Wang, B., and Jiang, Y., "N2O Decomposition over Cu-Zn/γ-Al2O3 Catalysts," Catalysts, 6(12), 200-209 (2016). https://doi.org/10.3390/catal6120200
  42. Argyle, M. and Bartholomew, C., "Heterogeneous Catalyst Deactivation and Regeneration: A Review," Catalysts, 5(1), 145-269 (2015). https://doi.org/10.3390/catal5010145
  43. Anus, A., Sheraz, M., Jeong, S., Kim, E.-k., and Kim, S., "Catalytic thermal decomposition of tetrafluoromethane (CF4): A review," J. Anal. Appl. Pyrolysis, 156, 105126 (2021).
  44. Tanaka, K., Shimizu, A., Fujimori, M., Kodama, S., and Sawai, S., "Deactivation of a Cu/Al2O3 catalyst in a N2O decomposition reaction," Bull. Chem. Soc. Jpn., 76(3), 651-657 (2003). https://doi.org/10.1246/bcsj.76.651