DOI QR코드

DOI QR Code

유해 화학물질 처리에 의한 녹농균과 포도상구균의 성장저해최소농도 측정

Measurement of Minimum Inhibitory Concentration of Toxic Chemicals against Pseudomonas aeruginosa and Staphylococcus aureus

  • 안지선 (충남대학교 응용화학공학과) ;
  • 김진경 (충남대학교 응용화학공학과) ;
  • 김재성 (충남대학교 응용화학공학과) ;
  • 이창수 (충남대학교 응용화학공학과)
  • Jiseon An (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Jingyeong Kim (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Jae Seong Kim (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Chang-Soo Lee (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 투고 : 2023.04.25
  • 심사 : 2023.05.23
  • 발행 : 2023.06.30

초록

Pseudomonas aeruginosa와 Staphylococcus aureus는 만성 창상 감염의 원인이 되는 주요 병원체이며 상처부위에서 공존한다. 이러한 감염은 단일 감염에 비해 독성이 높아 환자에게 바람직하지 않은 결과를 초래한다. 복합미생물 감염내에서 미생물 간의 상호작용은 질병 진행을 악화시키는 것으로 알려져 있다. 호흡기, 상처, 당뇨병 발과 같은 질병 내 복합 미생물 감염은 다양한 미생물들을 포함하나, 녹농균과 황색포도상구균이 가장 일반적으로 확인된다. 본 연구는 그람음성균 P. aeruginosa와 그람양성균 S. aureus를 중심으로 독성화학물질의 농도구배에 따른 성장양상을 비교하고자 하였다. 세균 성장이 억제되는 농도를 의미하는 최소 억제 농도(MIC)는 특정화학물을 함유한 배지를 연속적으로 희석하여 성장 곡선을 평가하여 결정한다. 두 균주 모두 상기 방법을 통해 성장곡선을 확인하였고, 지수성장기를 적용하여 세균의 배가시간을 계산하였다. 각 독성 물질에 대한 MIC 결과로부터 그람양성균과 그람음성균 사이의 성장 속도 차이와 각 독성 물질에 대한 내성 차이를 식별하였다. 우리는 이 접근 방식이 세균 관련 감염의 혁신적인 치료법 개발에 대한 강력한 잠재력을 가지고 있다고 기대한다.

Pseudomonas aeruginosa and Staphylococcus aureus are the two most frequently encountered pathogens responsible for chronic wound infections, often coexisting in such cases. These infections exhibit heightened virulence compared to single infections, leading to unfavorable patient outcomes. The interaction among microorganisms within polymicrobial infections has been shown to exacerbate disease progression. Polymicrobial infections, prevalent in various contexts such as the respiratory tract, wounds, and diabetic foot, typically involve diverse microorganisms, with Pseudomonas aeruginosa and Staphylococcus aureus being the most commonly identified pathogens. This study aimed to compare the growth patterns of bacteria under a concentration gradient of toxic chemicals, focusing on a Gram-negative strain of Pseudomonas aeruginosa and a Gram-positive strain of Staphylococcus aureus. The minimum inhibitory concentration (MIC), which signifies the concentration at which bacterial growth is inhibited, was determined by performing broth microdilution and assessing the bacteria's growth curves. The growth curves of both Pseudomonas aeruginosa and Staphylococcus aureus were confirmed, and the exponential growth phases were applied to calculate the doubling times of bacteria. The MIC value for each toxic chemical was determined through broth microdilution. These results allowed for the identification of disparities in growth rates between Gram-positive and Gram-negative bacteria, as well as differences in resistance to individual toxic substances. We expect that this approach has a strong potential for further development towards the innovative treatment of bacteria-associated infections.

키워드

과제정보

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1A2C3004936, NRF-2021R1A5A8032895).

참고문헌

  1. Liu, X., Cai, J., Chen, H., Zhong, Q., Hou, Y., Chen, W., and Chen, W., "Antibacterial activity and mechanism of linalool against pseudomonas aeruginosa," Micro. Pathog., 141, 103980 (2020).
  2. Lister, P. D., Wolter, D. J., and Hanson, N. D., "Antibacterial-resistant pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms," Clin. Microbiol. Rev., 22, 582-610 (2009). https://doi.org/10.1128/CMR.00040-09
  3. Moradali, M. F., Ghods, S., and Rehm, B. H., "Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence," Front. Cell. Infect. Microbiol., 7, 39 (2017).
  4. Ciofu, O. and Tolker-Nielsen, T., "Tolerance and resistance of pseudomonas aeruginosa biofilms to antimicrobial agents how p. Aeruginosa can escape antibiotics," Front. Microbiol., 10, 913 (2019).
  5. Taylor, T. A. and Unakal, C. G., "Staphylococcus aureus Infection," In Statpearls [internet], StatPearls Publishing (2022).
  6. Novickij, V., Lastauskiene, E., Staigvila, G., Girkontaite, I., Zinkeviciene, A., Svediene, J., Paskevicius, A., Markovskaja, S., and Novickij, J., "Low concentrations of acetic and formic acids enhance the inactivation of staphylococcus aureus and pseudomonas aeruginosa with pulsed electric fields," BMC microbiol., 19, 1-7 (2019).
  7. Kummerer, K., Alexy, R., Huttig, J., and Scholl, A., "Standardized tests fail to assess the effects of antibiotics on environmental bacteria," Water Res., 38, 2111-2116 (2004). https://doi.org/10.1016/j.watres.2004.02.004
  8. Denich, T., Beaudette, L., Lee, H., and Trevors, J., "Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes," J. Microbiol. Methods, 52, 149-182 (2003). https://doi.org/10.1016/S0167-7012(02)00155-0
  9. Queiroz, O., Arriola, K., Daniel, J., and Adesogan, A., "Effects of 8 chemical and bacterial additives on the quality of corn silage," J. Dairy Sci., 96, 5836-5843 (2013). https://doi.org/10.3168/jds.2013-6691
  10. Reller, L. B., Weinstein, M., Jorgensen, J. H., and Ferraro, M. J., "Antimicrobial susceptibility testing: A review of general principles and contemporary practices," Clin. Infect. Dis., 49, 1749-1755 (2009). https://doi.org/10.1086/647952
  11. Benkova, M., Soukup, O., and Marek, J., "Antimicrobial susceptibility testing: Currently used methods and devices and the near future in clinical practice," J. Appl. Microbiol., 129, 806-822 (2020). https://doi.org/10.1111/jam.14704
  12. Lei, X., Liu, B., Huang, Z., and Wu, J., "A clinical study of photodynamic therapy for chronic skin ulcers in lower limbs infected with pseudomonas aeruginosa," Arch. Dermatol., 307, 49-55 (2015). https://doi.org/10.1007/s00403-014-1520-4
  13. McMahon, M. A. S., Xu, J., Moore, J. E., Blair, I. S., and McDowell, D. A., "Environmental stress and antibiotic resistance in food-related pathogens," Appl. Environ. Microbiol., 73, 211-217 (2007). https://doi.org/10.1128/AEM.00578-06
  14. Halliwell, B., Clement, M. V., and Long, L. H., "Hydrogen peroxide in the human body," FEBS Lett., 486, 10-13 (2000). https://doi.org/10.1016/S0014-5793(00)02197-9
  15. Ernstgard, L., Iregren, A., Sjogren, B., and Johanson, G., "Acute effects of exposure to vapours of acetic acid in humans," Toxicol. Lett., 165, 22-30 (2006). https://doi.org/10.1016/j.toxlet.2006.01.010
  16. Ricke, S. C., Dittoe, D. K., and Richardson, K. E., "Formic acid as an antimicrobial for poultry production: A review," Front. Vet. Sci., 7, 563 (2020).
  17. Turner, P., Saeed, B., and Kelsey, M., "Dermal absorption of isopropyl alcohol from a commercial hand rub: Implications for its use in hand decontamination," J. Hosp. Infect., 56, 287-290 (2004). https://doi.org/10.1016/j.jhin.2004.01.005
  18. Juven, B. J. and Pierson, M. D., "Antibacterial effects of hydrogen peroxide and methods for its detection and quantitation," J. Food Prot., 59, 1233-1241 (1996). https://doi.org/10.4315/0362-028X-59.11.1233
  19. Mishra, S. and Imlay, J., "Why do bacteria use so many enzymes to scavenge hydrogen peroxide?," Arch. Biochem. Biophys., 525, 145-160 (2012). https://doi.org/10.1016/j.abb.2012.04.014
  20. Kim, J. H., "The Toxicity Evaluation of Hydrogen Peroxide to Aquatic Organisms," J. Environ. Manage., 14, 189-195 (2008).
  21. Tawre, M. S., Kamble, E. E., Kumkar, S. N., Mulani, M. S., and Pardesi, K. R., "Antibiofilm and antipersister activity of acetic acid against extensively drug resistant pseudomonas aeruginosa paw1," PLoS One, 16, e0246020 (2021).
  22. Ricke, S. C., Dittoe, D. K., and Richardson, K. E., "Formic acid as an antimicrobial for poultry production: A review," Front. Vet. Sci., 7, 563 (2020).
  23. Polycarpo, G. V., Andretta, I., Kipper, M., Cruz-Polycarpo, V. C., Dadalt, J. C., Rodrigues, P. H. M., and Albuquerque, R. d., "Meta-analytic study of organic acids as an alternative performance-enhancing feed additive to antibiotics for broiler chickens," Poult. Sci., 96, 3645-3653 (2017). https://doi.org/10.3382/ps/pex178
  24. Nordgren, C. and Berntsen, C., "The effect of formic acid on escherichia coli's susceptibility to different antibiotics," Student Paper, Norwegian University of Life Sciences, Viken (2020).
  25. Frobisher, Jr, M. and Sommermeyer, L., "A study of the effect of alcohols on tubercle bacilli and other bacteria in sputum," Am. Rev. Tuberc., 68, 419-424 (1953).
  26. Raval, Y. S., Flurin, L., Mohamed, A., Greenwood-Quaintance, K. E., Beyenal, H., and Patel, R., "In vitro activity of hydrogen peroxide and hypochlorous acid generated by electrochemical scaffolds against planktonic and biofilm bacteria," AAC., 01966 (2021).
  27. Nagoba, B., Gavkare, A., Rayate, A., Mumbre, S., Rao, A., Warad, B., Nanaware, N., and Jamadar, N., "Role of an acidic environment in the treatment of diabetic foot infections: A review," World J. Diabetes, 12, 1539-1549 (2021). https://doi.org/10.4239/wjd.v12.i9.1539
  28. Versalovic, J., "Manual of clinical microbiology," American Society for Microbiology Press (2011).
  29. Kang, W., Sarkar, S., Lin, Z. S., McKenney, S., and Konry, T., "Ultrafast parallelized microfluidic platform for antimicrobial susceptibility testing of gram positive and negative bacteria," Anal. Chem., 91, 6242-6249 (2019).  https://doi.org/10.1021/acs.analchem.9b00939