• Title/Summary/Keyword: ${\gamma}-Al_2O_3$

Search Result 306, Processing Time 0.029 seconds

Effects of Surface Characterization of γAl2O3 Particles by Aging in the Sol Preparation (졸 합성시 숙성이 γAl2O3 입자의 표면특성에 미치는 영향)

  • Yoo, Seung-Joon;Kwak, Dong-Heui;Kim, Hyeong-Gi;Hwang, Un-Yeon;Park, Hyung-Sang;Yoon, Ho-Sung;Jang, Hee Dong
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.545-549
    • /
    • 2008
  • The surface characteristics of calcined ${\gamma}-Al_2O_3$ particles as well as ${\gamma}-AlO$(OH) sol particles were controlled by aging in the boehmite sol preparation. As a result of the study, the IEPs of ${\gamma}-AlO$(OH) particles were decreased from pH 9.25 to pH 8.70 and those of the calcined ${\gamma}-Al_2O_3$ particles were decreased from pH 9.90 to pH 8.86 by the increase of the aging times. As a result of the acidic and basic characterization of the calcined ${\gamma}-Al_2O_3$ particles by the aging, the amount of acid sites was decreased from 0.1367 mmol/g to 0.0783 mmol/g by the increase of the aging times and Hammett acidity, $H_o$ was showed the acidic strength of 4.8 or above. On the other hand, the amount of basic sites was decreased from 0.4399 mmol/g to 0.3074 mmol/g by the increase of the aging times. Based on these results, we proposed the fact that the aging step in the sol-gel process was an important step to control the surface characterization of ${\gamma}-Al_2O_3$ particles including acidity and basicity.

Effect of $Al_2O_3$ pre-layers formed using protective Si-oxide layer on the growth of ultra thin ${\gamma}-Al_2O_3$ epitaxial layer (보호용 실리콘 산화막을 이용하여 제조된 $Al_2O_3$ 예비층이 초박막 ${\gamma}-Al_2O_3$ 에피텍시의 성장에 미치는 영향)

  • Jung, Young-Chul;Jun, Bon-Keun;Ishida, Makoto
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.389-395
    • /
    • 2000
  • In this paper, we propose the formation of an $Al_2O_3$ pre-layer using a protective Si-oxide layer and Al layer. Deposition of a thin film layer of aluminum onto a Si surface covered with a thin Si-oxide layer and annealing at $800^{\circ}C$ led to the growth of epitaxial $Al_2O_3$ layer on Si(111). And ${\gamma}-Al_2O_3$ layer was grown on the $Al_2O_3$ per-layer. Etching of the Si substrate by $N_2O$ gas could be avoided in the initial growth stage by the $Al_2O_3$ pre-layer. It was confirmed that the $Al_2O_3$ pre-layer was effective in improving the surface morphology of the very thin ${\gamma}-Al_2O_3$ films.

  • PDF

Reforming of Propane by Carbon Dioxide using Ni/γ-A12O3 Catalysts (Ni/γ-Al2O3 촉매상에서 이산화탄소에 의한 프로판의 개질)

  • Kim, K. H.;Kim, J. H.;Chang, S. C.;Park, D. W.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.382-388
    • /
    • 1997
  • Reforming of propane by carbon dioxide using NiO/${\gamma}$-$A1_2O_3$ was carried out in a pulse or continuous kid bed reactor. NiO/${\gamma}$-$Al_2O_3$ showed higher dissociation ability of $CO_2$ than NiO/${\gamma}$-$Al_2O_3$, and the former exhibited higher conversion of propane than the latter. The presence of oxygen in the reaction mixture of propane and $CO_2$ increased the conversion of propane and reduced the amount of carbon deposit on the catalyst surface. Mechanical mixture catalyst of NiO/${\gamma}$-$Al_2O_3$ and $Ga_2O_3$ showed higher stability to deactivation than NiO/${\gamma}$-$Al_2O_3$ itself. The synergistic effect between NiO/${\gamma}$-$Al_2O_3$ and $Al_2O_3$ was also observed in this study.

  • PDF

Effect of Pt-Sn/Al2O3 catalysts mixed with metal oxides for propane dehydrogenation (프로판 탈수소 반응에 미치는 금속산화물과 혼합된 Pt-Sn/Al2O3 촉매의 영향)

  • Jung, Jae Won;Koh, Hyoung Lim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.401-410
    • /
    • 2016
  • The $Pt-Sn/Al_2O_3$ catalysts mixed with metal oxides for propane dehydrogenation were studied. $Cu-Mn/{\gamma}-Al_2O_3$, $Ni-Mn/{\gamma}-Al_2O_3$, $Cu/{\alpha}-Al_2O_3$ was prepared and mixed with $Pt-Sn/Al_2O_3$ to measure the activity for propane dehydrogenation. As standard sample, $Pt-Sn/Al_2O_3$ catalyst mixed with glassbead was adopted. In the case of catalytic activity test after non-reductive pretreatment of catalyst and metal oxide, $Pt-Sn/Al_2O_3$ mixed with $Cu-Mn/{\gamma}-Al_2O_3$ showed higher conversion of 15% and similar selectivity at $576.5^{\circ}C$, compared to conversion of 8% in standard sample. In the case of catalytic activity test after reductive pretreatment of catalyst and metal oxde, $Cu/{\alpha}-Al_2O_3$ showed higer yield than standard sample. But, increase of yield of most of samples after reductive pretreatment was not significant, so it was found that lattice oxygen of $Cu-Mn/{\gamma}-Al_2O_3$ is effective to propane dehydrogenation.

Preparation of Ni-doped Gamma Alumina from Gibbsite and Its Characteristics (깁사이트로부터 니켈피착 감마알루미나의 제조 및 특성)

  • Lee, Hyun;Chung, In-Sung;Park, Hee-Chan
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1158-1164
    • /
    • 1998
  • Aluminium sulfate solution was prepared by sulfuric acid treatment from gibbsite. Aluminium sulfate hydrate [$Al_2(SO_4)_3$ · $nH_2O$] was precipitated from aluminium sulfate solution by adding it into ethylalcohol. From XRD analysis as-prepared $Al_2(SO_4)_3$ · $nH_2O$ was confirmed to have mixed-crystalization water(n=18, 16, 12, 6). The average water of crystalization calculated from thermogravimetry(TG) was 14.7. Aluminium sulfate hydrate [$Al_2(SO_4)_3$ · $nH_2O$] was thermally decomposed and converted to $Al_2(SO_4)_3$ at $800^{\circ}C$, $\gamma-Al_2O_3$ at $900-1000^{\circ}C$, and $\alpha-Al_2O_3$ at $1200^{\circ}C$. Ni-doped $\gamma-Al_2O_3$, was synthesized from the slurry of as-prepared $\gamma-Al_2O_3$, with the ratio of [Ni]/[Al]=0.5. The reaction conditions of synthesis were determined as initial pH 9.0 and temperature $80^{\circ}C$ The basicity(pH) of slurry was controlled by using urea and $NH_4OH$ solution. Urea was also used for deposition-precipitation. For determining termination of reaction, the data acquisition was performed by oxidation reduction potential(ORP), conductivity and pH value in the process of reaction. Termination of the reaction was decided by observing the reaction steps and rapid decrease in conductivity. On the other hand, BET(Brunauer, Emmett and Teller) and thermal diffusity of Ni- doped $\gamma-Al_2O_3$, with various content of Ni were measured and compared. Thermal stability of Ni- doped $\gamma-Al_2O_3$ at $1250^{\circ}C$ was confirmed from BET and XRD analysis. The surface state of Ni-doped $\gamma-Al_2O_3$ was investigated by X-ray photoelectron spectroscopy(XPS). The binding energy at $Ni2P_{3/2}$ increased with increasing the formation of $NiAl_2O_4$ phase.

  • PDF

Combined Removal of n-heptane and CO using Plasma-catalytic Process (플라즈마/촉매 공정을 이용한 n-헵테인과 일산화탄소 동시제거)

  • Lee, Sang Baek;Jo, Jin Oh;Mok, Young Sun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • Combined removal of n-heptane and carbon monoxide (CO) using a plasma-catalytic process was investigated. The performance of the plasma-catalytic process was compared with that of the catalyst-alone process to characterize the decomposition of n-heptane and CO with the operation parameters such as the type of catalyst, reaction temperature, and discharge power. From several sets of experiments, it was found that the decomposition efficiency of n-heptane mainly depended on the specific input energy rather than the reactor temperature, whereas the oxidation of CO on both the energy density and the reaction temperature. The results conducted over several metal oxide catalysts exhibited that the decomposition efficiency of n-heptane was in the order: $Pd/{\gamma}-Al_2O_3$ > $Ru/{\gamma}-Al_2O_3{\approx}Ag/{\gamma}-Al_2O_3$. Especially, $Pd/{\gamma}-Al_2O_3$ catalyst did hardly generate CO as a byproduct during the decomposition of n-heptane under an appropriate condition, revealing $CO_2$ selectivity of nearly 100%. The CO oxidation efficiency was largely affected by the type of catalyst ($Pd/{\gamma}-Al_2O_3$ > $Ru/{\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$). At temperatures below $180^{\circ}C$, the plasma-catalytic process was more effective in the oxidation of CO, while above $180^{\circ}C$, the catalytic process resulted in slightly higher CO oxidation efficiency.

Effect of Composition of γ-Al2O3/SiO2 Mixed Support on Fischer-Tropsch Synthesis with Iron Catalyst (철 기반 촉매의 Fischer-Tropsch 합성에서 γ-Al2O3/SiO2 혼합 지지체 조성의 영향)

  • Min, Seon Ki;No, Seong-Rae;You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.436-442
    • /
    • 2017
  • Fischer-Tropsch synthesis is the technology of converting a syngas (CO+$H_2$) derived from such as coal, natural gas and biomass into a hydrocarbon using a catalyst. The catalyst used in the Fischer-Tropsch synthesis consists of active metal, promoter and support. The types of these components and composition affect the reaction activity and product selectivity. In this study, we manufactured an iron catalyst using ${\gamma}-Al_2O_3/SiO_2$ mixed support (100/0 wt%, 75/25 wt%, 50/50 wt%, 25/75 wt%, 0/100 wt%) by an impregnation method to investigate how the composition of ${\gamma}-Al_2O_3/SiO_2$ mixed support effects on the reaction activity and product selectivity. The physical properties of catalyst were analyzed by $N_2$ physical adsorption and X-Ray diffraction method. The Fischer-Tropsch synthesis was conducted at $300^{\circ}C$, 20bar in a fixed bed reactor for 60h. According to the results of the $N_2$ physical adsorption analysis, the BET surface area decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the pore volume and pore average diameter increase as the composition of ${\gamma}-Al_2O_3$ decreases except for the composition of ${\gamma}-Al_2O_3/SiO_2$ of 50/50 wt%. By the results of the X-Ray diffraction analysis, the particle size of ${\alpha}-Fe_2O_3$ decreases as the composition of ${\gamma}-Al_2O_3$ decreases. As a result of the Fischer-Tropsch synthesis, the CO conversion decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the selectivity of C1-C4 decreases until the composition of ${\gamma}-Al_2O_3$ was 25 wt%. In contrast, the selectivity of C5+ increases until the composition of ${\gamma}-Al_2O_3$ is 25 wt%.

Activity and Selectivity in Low Temperature for Dibenzothiophene Hydrodesulfurization based Zeolite Support (제올라이트 담체상의 디벤조티오펜 수첨탈황반응에서 저온활성 및 선택성)

  • Kim, Moon-Chan
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.101-106
    • /
    • 1998
  • Two types of CoMo/zeolite as well as $NiMo/{\gamma}-Al_2O_3$ were prepared and their activities and selectivities of low-temperature dibenzothiophene(DBT) hydrodesulfurization(HDS) were studied in high pressure fixed bed reactor. The HDS activities of CoMo/zeolites were higher than that of $NiMo/{\gamma}-Al_2O_3$ at temperatures below $225^{\circ}C$ while they were lower than that of $NiMo/{\gamma}-Al_2O_3$ at temperatures higher than $275^{\circ}C$. The main products from $NiMo/{\gamma}-Al_2O_3$ were biphenyl and cyclohexylbenzene. The product distribution of CoMo/zeolite catalysts was different from that of $NiMo/{\gamma}-Al_2O_3$. It is speculated that DBT is converted to alkylcyclohexane over zeolite based catalysts through both alkylation and hydrogenation reactions. The crystal structure of molybdenum was $MoO_3$ in fresh zeolite support while mixtures of $MoO_3$ and $MoS_2$ were observed in the aged catalyst.

  • PDF

Temperature-Programmed Reduction of Copper Oxide Supported on ${\gamma}-Al_2O_3$ and $SiO_2$ (${\gamma}-Al_2O_3$$SiO_2$에 입혀진 산화 구리의 승온 환원)

  • Hwa-Gyung Lee;Chong-Soo Han;Min-Soo Cho;Kae-Soo Lee;Hakze Chon
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.415-422
    • /
    • 1986
  • The metal-support interaction of copper oxide supported on ${\gamma}$-alumina and silica was studied by X-ray diffraction (XRD) and temperature-programmed reduction(TPR). It was found that XRD pattern of CuO can not be observed up to 5.0wt % copper content for CuO/${\gamma}-Al_2O_3$ while CuO/$SiO_2$ sample shows the CuO pattern even at 2.5wt% copper content. $H_2-$TPR of CuO/${\gamma}-Al_2O_3$ system shows four major peaks at 145${\circ}C$, 185${\circ}C$, 210${\circ}C$, and 250${\circ}C$. In the case of CuO/$SiO_2$, a large peak at 250${\circ}C$ was appeared accompanying a small peak at 425${\circ}C$. Comparing the TPR peaks with that of copper aluminate which was prepared from the calcination of CuO/${\gamma}-Al_2O_3$ at 1000${\circ}C$, the peaks at around 145${\circ}C$, 200${\circ}C$ (185${\circ}C$ and 210${\circ}C$), and 250${\circ}C$ were corresponded to $Cu^+$ ion in CuO interacting ${\gamma}-Al_2O_3$, $Cu^+$ ions in defect sites of ${\gamma}-Al_2O_3$ and $Cu^{2+}$ ion in the bulk CuO layer, respectively. From the results, it was concluded that there is considerable metal-support interaction in CuO on ${\gamma}-Al_2O_3$ and the interaction results in a stabilization of $Cu^+$ ion in the system.

  • PDF

Catalytic Decomposition of SF6 by Hydrolysis over γ - Al2O3 Supported Metal Oxide Catalysts (금속산화물이 담지된 γ - Al2O3 촉매상에서 가수분해에 의한 SF6의 촉매분해)

  • Park, Hyeon-Gyu;Park, No-Kuk;Lee, Tae-Jin;Chang, Won-Chul;Kwon, Won-Tae
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.83-88
    • /
    • 2012
  • In order to improve the stability of ${\gamma}-Al_2O_3$ on hydrolysis of $SF_6$, the catalytic promoters were investigated in this study. The crystal phase of ${\gamma}-Al_2O_3$ is transformed to their ${\alpha}$-phase during hydrolysis of $SF_6$. Various metal oxides were applied as the promoter material that is Ga, Mg, and Zn and the promoter of 1, 5, and 10 wt% was impregnated over ${\gamma}-Al_2O_3$ by the impregnation method. Specially, it were confirmed in the catalytic activity tests and XRD analysis that ZnO/${\gamma}-Al_2O_3$ catalyst had the high activity for decomposition of $SF_6$ by catalytic hydrolysis and the crystal phase of ZnO promoted ${\gamma}-Al_2O_3$ was not transformed. From these results, it could be known that the stability of ${\gamma}-Al_2O_3$ is enhanced with the catalytic promotion of ZnO impregnated over the surface of catalyst.