Acknowledgement
This research was funded by the Basic Science Research Program of the National Research Foundation Korea (NRF), grant number 2019R1A2C1005899; an NRF grant funded by the Korean government (MSIT), grant number 2022R1A5A8033794.
References
- Byeon, H. K., Ku, M. and Yang, J. (2019) Beyond EGFR inhibition: multilateral combat strategies to stop the progression of head and neck cancer. Exp. Mol. Med. 51, 1-14. https://doi.org/10.1038/s12276-018-0202-2
- Elamin, Y. Y., Robichaux, J. P., Carter, B. W., Altan, M., Tran, H., Gibbons, D. L., Heeke, S., Fossella, F. V., Lam, V. K., Le, X., Negrao, M. V., Nilsson, M. B., Patel, A., Vijayan, R. S. K., Cross, J. B., Zhang, J., Byers, L. A., Lu, C., Cascone, T., Feng, L., Luthra, R., San Lucas, F. A., Mantha, G., Routbort, M., Blumenschein, G., Jr., Tsao, A. S. and Heymach, J. V. (2022) Poziotinib for EGFR exon 20-mutant NSCLC: clinical efficacy, resistance mechanisms, and impact of insertion location on drug sensitivity. Cancer Cell 40, 754-767.e6. https://doi.org/10.1016/j.ccell.2022.06.006
- Engelman, J. A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J. O., Lindeman, N., Gale, C. M., Zhao, X., Christensen, J., Kosaka, T., Holmes, A. J., Rogers, A. M., Cappuzzo, F., Mok, T., Lee, C., Johnson, B. E., Cantley, L. C. and Janne, P. A. (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039-1043. https://doi.org/10.1126/science.1141478
- Fu, X., Zhao, R., Yoon, G., Shim, J. H., Choi, B. Y., Yin, F., Xu, B., Laster, K. V., Liu, K., Dong, Z. and Lee, M. H. (2021) 3-Deoxysappanchalcone inhibits skin cancer proliferation by regulating T-lymphokine-activated killer cell-originated protein kinase in vitro and in vivo. Front. Cell Dev. Biol. 9, 638174.
- Huang, C. Y., Hsu, L. H., Chen, C. Y., Chang, G. C., Chang, H. W., Hung, Y. M., Liu, K. J. and Kao, S. H. (2020) Inhibition of alternative cancer cell metabolism of EGFR mutated non-small cell lung cancer serves as a potential therapeutic strategy. Cancers (Basel) 12, 181.
- Juchum, M., Gunther, M. and Laufer, S. A. (2015) Fighting cancer drug resistance: opportunities and challenges for mutation-specific EGFR inhibitors. Drug Resist. Updat. 20, 12-28. https://doi.org/10.1016/j.drup.2015.05.002
- Kim, J. H., Choo, Y. Y., Tae, N., Min, B. S. and Lee, J. H. (2014) The anti-inflammatory effect of 3-deoxysappanchalcone is mediated by inducing heme oxygenase-1 via activating the AKT/mTOR pathway in murine macrophages. Int. Immunopharmacol. 22, 420-426. https://doi.org/10.1016/j.intimp.2014.07.025
- Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J. and Bolton, E. E. (2023) PubChem 2023 update. Nucleic Acids Res. 51, D1373-D1380. https://doi.org/10.1093/nar/gkac956
- Kwak, A. W., Lee, M. J., Lee, M. H., Yoon, G., Cho, S. S., Chae, J. I. and Shim, J. H. (2021) The 3-deoxysappanchalcone induces ROS-mediated apoptosis and cell cycle arrest via JNK/p38 MAPKs signaling pathway in human esophageal cancer cells. Phytomedicine 86, 153564.
- Lo, H. W. and Hung, M. C. (2007) Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br. J. Cancer 96 Suppl, R16-R20.
- McDermott, U., Pusapati, R. V., Christensen, J. G., Gray, N. S. and Settleman, J. (2010) Acquired resistance of non-small cell lung cancer cells to MET kinase inhibition is mediated by a switch to epidermal growth factor receptor dependency. Cancer Res. 70, 1625-1634. https://doi.org/10.1158/0008-5472.CAN-09-3620
- Morgillo, F., Della Corte, C. M., Fasano, M. and Ciardiello, F. (2016) Mechanisms of resistance to EGFR-targeted drugs: lung cancer. ESMO Open 1, e000060.
- Perillo, B., Di Donato, M., Pezone, A., Di Zazzo, E., Giovannelli, P., Galasso, G., Castoria, G. and Migliaccio, A. (2020) ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med. 52, 192-203. https://doi.org/10.1038/s12276-020-0384-2
- Puri, N. and Salgia, R. (2008) Synergism of EGFR and c-Met pathways, cross-talk and inhibition, in non-small cell lung cancer. J. Carcinog. 7, 9.
- Rasband, W. S. (1997-2018) ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA. Available from: https://imagej.nih.gov/ij/.
- Remon, J., Moran, T., Majem, M., Reguart, N., Dalmau, E., Marquez-Medina, D. and Lianes, P. (2014) Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer: a new era begins. Cancer Treat. Rev. 40, 93-101. https://doi.org/10.1016/j.ctrv.2013.06.002
- Siegel, R. L., Miller, K. D. and Jemal, A. (2017) Cancer statistics, 2017. CA Cancer J. Clin. 67, 7-30. https://doi.org/10.3322/caac.21387
- Tartarone, A. and Lerose, R. (2015) Clinical approaches to treat patients with non-small cell lung cancer and epidermal growth factor receptor tyrosine kinase inhibitor acquired resistance. Ther. Adv. Respir. Dis. 9, 242-250. https://doi.org/10.1177/1753465815587820
- Trott, O. and Olson, A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455-461. https://doi.org/10.1002/jcc.21334
- Wang, X., Zhang, H. and Chen, X. (2019) Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2, 141-160. https://doi.org/10.20517/cdr.2019.10
- Westover, D., Zugazagoitia, J., Cho, B. C., Lovly, C. M. and Paz-Ares, L. (2018) Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann. Oncol. 29, i10-i19. https://doi.org/10.1093/annonc/mdx703
- Yang, J. J., Fang, J., Shu, Y. Q., Chang, J. H., Chen, G. Y., He, J. X., Li, W., Liu, X. Q., Yang, N., Zhou, C., Huang, J. A., Frigault, M. M., Hartmaier, R., Ahmed, G. F., Egile, C., Morgan, S., Verheijen, R. B., Mellemgaard, A., Yang, L. and Wu, Y. L. (2021) A phase Ib study of the highly selective MET-TKI savolitinib plus gefitinib in patients with EGFR-mutated, MET-amplified advanced non-small-cell lung cancer. Invest. New Drugs 39, 477-487. https://doi.org/10.1007/s10637-020-01010-4
- Yang, Y., Karakhanova, S., Hartwig, W., D'Haese, J. G., Philippov, P. P., Werner, J. and Bazhin, A. V. (2016) Mitochondria and mitochondrial ROS in cancer: novel targets for anticancer therapy. J. Cell. Physiol. 231, 2570-2581. https://doi.org/10.1002/jcp.25349