DOI QR코드

DOI QR Code

LKB1/STK11 Tumor Suppressor Reduces Angiogenesis by Directly Interacting with VEGFR2 in Tumorigenesis

  • Seung Bae Rho (Division of Cancer Biology, Research Institute, National Cancer Center) ;
  • Hyun Jung Byun (College of Pharmacy, Dongguk University) ;
  • Boh-Ram Kim (College of Pharmacy, Dongguk University) ;
  • Chang Hoon Lee (College of Pharmacy, Dongguk University)
  • Received : 2023.06.02
  • Accepted : 2023.06.13
  • Published : 2023.07.01

Abstract

Cervical tumors represent a prevalent form of cancer affecting women worldwide; current treatment options involve surgery, radiotherapy, and chemotherapy. Angiogenesis, the process of new blood vessel formation, is a crucial factor in cervical tumor growth. The molecular mechanisms underlying the effects of the liver kinase B1 (LKB1/STK11) tumor suppressor protein on tumor angiogenesis have not been elucidated. Therefore, we investigated the role of LKB1 in cervical tumor angiogenesis both in vitro and in vivo in this study. Our results demonstrated that LKB1 inhibited cervical tumor angiogenesis by suppressing the expression of angiogenesis-related factors such as vascular endothelial growth factor (VEGF) and hypoxia inducible factor-1α. LKB1 directly affected both carcinoma and vascular endothelial cells, resulting in a significant reduction in tumor growth and angiogenesis. Furthermore, LKB1 was found to bind to VEGF receptor 2 (VEGFR-2) and target the VEGFR-2-mediated protein kinase B/mechanistic target of rapamycin signaling pathway in endothelial cells, thereby reducing cervical tumor growth and angiogenesis. Our study provides new insights into the molecular mechanisms underlying the anti-tumor and anti-angiogenic effects of LKB1 in cervical cancer. These findings will help develop new therapeutic strategies for cervical cancer.

Keywords

Acknowledgement

This work was supported by a grant from the National Cancer Center, Korea (NCC-2112500-1 and 2210450-1) and the Basic Science Research Program and the BK21 FOUR program through the NRF (NRF-2018R1A5A2023127, and NRF-2020R1A2C3004973).

References

  1. Amin, N., Khan, A., St. Johnston, D., Tomlinson, I., Martin, S., Brenman, J. and McNeill, H. (2009) LKB1 regulates polarity remodeling and adherens junction formation in the Drosophila eye. Proc. Natl. Acad. Sci. U. S. A. 106, 8941-8946. https://doi.org/10.1073/pnas.0812469106
  2. Burmeister, C. A., Khan, S. F., Schafer, G., Mbatani, N., Adams, T., Moodley, J. and Prince, S. (2022) Cervical cancer therapies: current challenges and future perspectives. Tumour Virus Res. 13, 200238.
  3. Contreras, C. M., Gurumurthy, S., Haynie, J. M., Shirley, L. J., Akbay, E. A., Wingo, S. N., Schorge, J. O., Broaddus, R. R., Wong, K.-K., Bardeesy, N. and Castrillon, D. H. (2008) Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas. Cancer Res. 68, 759-766. https://doi.org/10.1158/0008-5472.CAN-07-5014
  4. Daniell, J., Plazzer, J.-P., Perera, A. and Macrae, F. (2018) An exploration of genotype-phenotype link between Peutz-Jeghers syndrome and STK11: a review. Fam. Cancer 17, 421-427. https://doi.org/10.1007/s10689-017-0037-3
  5. Das, S., Babu, A., Medha, T., Ramanathan, G., Mukherjee, A. G., Wanjari, U. R., Murali, R., Kannampuzha, S., Gopalakrishnan, A. V., Renu, K., Sinha, D. and George Priya Doss, C. (2023) Molecular mechanisms augmenting resistance to current therapies in clinics among cervical cancer patients. Med. Oncol. 40, 149.
  6. Gao, Y., Xiao, Q., Ma, H., Li, L., Liu, J., Feng, Y., Fang, Z., Wu, J., Han, X., Zhang, J., Sun, Y., Wu, G., Padera, R., Chen, H., Wong, K. K., Ge, G. and Ji, H. (2010) LKB1 inhibits lung cancer progression through lysyl oxidase and extracellular matrix remodeling. Proc. Natl. Acad. Sci. U. S. A. 107, 18892-18897. https://doi.org/10.1073/pnas.1004952107
  7. Go, S.-H., Rho, S. B., Yang, D.-W., Kim, B.-R., Lee, C. H. and Lee, S.-H. (2022) HPV-18 E7 interacts with Elk-1 leading to elevation of the transcriptional activity of Elk-1 in cervical cancer. Biomol. Ther. (Seoul) 30, 593-602. https://doi.org/10.4062/biomolther.2022.108
  8. Goel, H. L. and Mercurio, A. M. (2013) VEGF targets the tumour cell. Nat. Rev. Cancer 13, 871-882. https://doi.org/10.1038/nrc3627
  9. Goyal, A., Neill, T., Owens, R. T., Schaefer, L. and Iozzo, R. V. (2014) Decorin activates AMPK, an energy sensor kinase, to induce autophagy in endothelial cells. Matrix Biol. 34, 46-54. https://doi.org/10.1016/j.matbio.2013.12.011
  10. Hardie, D. G. (2013) The LKB1-AMPK pathway-friend or foe in cancer? Cancer Cell 23, 131-132. https://doi.org/10.1016/j.ccr.2013.01.009
  11. Hemminki, A., Markie, D., Tomlinson, I., Avizienyte, E., Roth, S., Loukola, A., Bignell, G., Warren, W., Aminoff, M., Hoglund, P., Jarvinen, H., Kristo, P., Pelin, K., Ridanpaa, M., Salovaara, R., Toro, T., Bodmer, W., Olschwang, S., Olsen, A. S., Stratton, M. R., de la Chapelle, A. and Aaltonen, L. A. (1998) A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391, 184-187. https://doi.org/10.1038/34432
  12. Hou, M.-M., Liu, X., Wheler, J., Naing, A., Hong, D., Coleman, R. L., Tsimberidou, A., Janku, F., Zinner, R., Lu, K., Kurzrock, R. and Fu, S. (2014) Targeted PI3K/AKT/mTOR therapy for metastatic carcinomas of the cervix: a phase I clinical experience. Oncotarget 5, 11168-11179. https://doi.org/10.18632/oncotarget.2584
  13. Howie, H. L., Katzenellenbogen, R. A. and Galloway, D. A. (2009) Papillomavirus E6 proteins. Virology 384, 324-334. https://doi.org/10.1016/j.virol.2008.11.017
  14. Iyengar, P., Gandhi, A. Y., Granados, J., Guo, T., Gupta, A., Yu, J., Llano, E. M., Zhang, F., Gao, A., Kandathil, A., Williams, D., Gao, B., Girard, L., Malladi, V. S., Shelton, J. M., Evers, B. M., Hannan, R., Ahn, C., Minna, J. D. and Infante, R. E. (2023) Tumor loss-offunction mutations in STK11/LKB1 induce cachexia. JCI Insight 8, e165419. https://doi.org/10.1172/jci.insight.165419
  15. Jenne, D. E., Reomann, H., Nezu, J.-i., Friedel, W., Loff, S., Jeschke, R., Muller, O., Back, W. and Zimmer, M. (1998) Peutz-Jeghers syndrome is caused by mutations in a novel serine threoninekinase. Nat. Genet. 18, 38-43. https://doi.org/10.1038/ng0198-38
  16. Ji, H., Ramsey, M. R., Hayes, D. N., Fan, C., McNamara, K., Kozlowski, P., Torrice, C., Wu, M. C., Shimamura, T., Perera, S. A., Liang, M. C., Cai, D., Naumov, G. N., Bao, L., Contreras, C. M., Li, D., Chen, L., Krishnamurthy, J., Koivunen, J., Chirieac, L. R., Padera, R. F., Bronson, R. T., Lindeman, N. I., Christiani, D. C., Lin, X., Shapiro, G. I., Janne, P. A., Johnson, B. E., Meyerson, M., Kwiatkowski, D. J., Castrillon, D. H., Bardeesy, N., Sharpless, N. E. and Wong, K. K. (2007) LKB1 modulates lung cancer differentiation and metastasis. Nature 448, 807-810. https://doi.org/10.1038/nature06030
  17. Kang, G. J., Park, J. H., Kim, H. J., Kim, E. J., Kim, B., Byun, H. J., Yu, L., Nguyen, T. M., Nguyen, T. H., Kim, K. S., Huy, H. P., Rahman, M., Kim, Y. H., Jang, J. Y., Park, M. K., Lee, H., Choi, C. I., Lee, K., Han, H. K., Cho, J., Rho, S. B. and Lee, C. H. (2022) PRR16/Largen induces epithelial-mesenchymal transition through the interaction with ABI2 leading to the activation of ABL1 kinase. Biomol. Ther. (Seoul) 30, 340-347. https://doi.org/10.4062/biomolther.2022.066
  18. Karuman, P., Gozani, O., Odze, R. D., Zhou, X. C., Zhu, H., Shaw, R., Brien, T. P., Bozzuto, C. D., Ooi, D., Cantley, L. C. and Yuan, J. (2001) The Peutz-Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol. Cell 7, 1307-1319. https://doi.org/10.1016/S1097-2765(01)00258-1
  19. Kerbel, R. S. (2008) Tumor angiogenesis. N. Engl. J. Med. 358, 2039-2049. https://doi.org/10.1056/NEJMra0706596
  20. Kim, B.-R., Seo, S. H., Park, M. S., Lee, S.-H., Kwon, Y. and Rho, S. B. (2015) sMEK1 inhibits endothelial cell proliferation by attenuating VEGFR-2-dependent-Akt/eNOS/HIF-1α signaling pathways. Oncotarget 6, 31830.
  21. Koh, W.-J., Abu-Rustum, N. R., Bean, S., Bradley, K., Campos, S. M., Cho, K. R., Chon, H. S., Chu, C., Clark, R., Cohn, D., Crispens, M. A., Damast, S., Dorigo, O., Eifel, P. J., Fisher, C. M., Frederick, P., Gaffney, D. K., Han, E., Huh, W. K., Lurain, J. R., Mariani, A., Mutch, D., Nagel, C., Nekhlyudov, L., Fader, A. N., Remmenga, S. W., Reynolds, R. K., Tillmanns, T., Ueda, S., Wyse, E., Yashar, C. M., McMillian, N. R. and Scavone, J. L. (2019) Cervical cancer, version 3.2019, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw. 17, 64-84. https://doi.org/10.6004/jnccn.2019.0001
  22. Lee, J. H., Chun, T., Park, S.-Y. and Rho, S. B. (2008) Interferon regulatory factor-1 (IRF-1) regulates VEGF-induced angiogenesis in HUVECs. Biochim. Biophys. Acta 1783, 1654-1662. https://doi.org/10.1016/j.bbamcr.2008.04.006
  23. Lee, M.-S., Jeong, M.-H., Lee, H.-W., Han, H.-J., Ko, A., Hewitt, S. M., Kim, J.-H., Chun, K.-H., Chung, J.-Y., Lee, C., Cho, H. and Song, J. (2015) PI3K/AKT activation induces PTEN ubiquitination and destabilization accelerating tumourigenesis. Nat. Commun. 6, 7769.
  24. Li, S.-W., Wu, X.-L., Dong, C.-L., Xie, X.-Y., Wu, J.-F. and Zhang, X. (2015) The differential expression of OCT4 isoforms in cervical carcinoma. PLoS One 10, e0118033.
  25. Lyng, H. and Malinen, E. (2017) Hypoxia in cervical cancer: from biology to imaging. Clin. Transl. Imaging 5, 373-388. https://doi.org/10.1007/s40336-017-0238-7
  26. Mayerhofer, M., Valent, P., Sperr, W. R., Griffin, J. D. and Sillaber, C. (2002) BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1α, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood 100, 3767-3775. https://doi.org/10.1182/blood-2002-01-0109
  27. Nakada, D., Saunders, T. L. and Morrison, S. J. (2010) Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468, 653-658. https://doi.org/10.1038/nature09571
  28. Niizeki, H., Kobayashi, M., Horiuchi, I., Akakura, N., Chen, J., Wang, J., Hamada, J., Seth, P., Katoh, H.,Watanabe, H., Raz, A. and Hosokawa, M. (2002) Hypoxia enhances the expression of autocrine motility factor and the motility of human pancreatic cancer cells. Br. J. Cancer 86, 1914-1919. https://doi.org/10.1038/sj.bjc.6600331
  29. Ossipova, O., Bardeesy, N., DePinho, R. A. and Green, J. B. (2003) LKB1 (XEEK1) regulates Wnt signalling in vertebrate development. Nat. Cell Biol. 5, 889-894. https://doi.org/10.1038/ncb1048
  30. Park, M. S., Dong, S. M., Kim, B.-R., Seo, S. H., Kang, S., Lee, E.-J., Lee, S.-H. and Rho, S. B. (2014) Thioridazine inhibits angiogenesis and tumor growth by targeting the VEGFR-2/PI3K/mTOR pathway in ovarian cancer xenografts. Oncotarget 5, 4929-4934. https://doi.org/10.18632/oncotarget.2063
  31. Prasad, S. B., Yadav, S. S., Das, M., Modi, A., Kumari, S., Pandey, L. K., Singh, S., Pradhan, S. and Narayan, G. (2015) PI3K/AKT pathway-mediated regulation of p27 Kip1 is associated with cell cycle arrest and apoptosis in cervical cancer. Cell. Oncol. 38, 215-225. https://doi.org/10.1007/s13402-015-0224-x
  32. Rho, S. B., Byun, H.-J., Kim, B.-R. and Lee, C. H. (2022) Snail promotes cancer cell proliferation via its interaction with the BIRC3. Biomol. Ther. (Seoul) 30, 380-388. https://doi.org/10.4062/biomolther.2022.063
  33. Rho, S. B., Kim, M. J., Lee, J. S., Seol, W., Motegi, H., Kim, S. and Shiba, K. (1999) Genetic dissection of protein-protein interactions in multi-tRNA synthetase complex. Proc. Natl. Acad. Sci. U. S. A. 96, 4488-4493. https://doi.org/10.1073/pnas.96.8.4488
  34. Rho, S. B., Lee, S.-H., Byun, H.-J., Kim, B.-R. and Lee, C. H. (2020) IRF-1 inhibits angiogenic activity of HPV16 E6 oncoprotein in cervical cancer. Int. J. Mol. Sci. 21, 7622.
  35. Rodriguez-Freixinos, V. and Mackay, H. J. (2015) Breaking down the evidence for bevacizumab in advanced cervical cancer: past, present and future. Gynecol. Oncol. Res. Pract. 2, 8.
  36. Shackelford, D. B. and Shaw, R. J. (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9, 563-575. https://doi.org/10.1038/nrc2676
  37. Shan, T., Zhang, P., Liang, X., Bi, P., Yue, F. and Kuang, S. (2014) Lkb1 is indispensable for skeletal muscle development, regeneration, and satellite cell homeostasis. Stem Cells 32, 2893-2907. https://doi.org/10.1002/stem.1788
  38. Shorning, B. Y. and Clarke, A. R. (2011) LKB1 loss of function studied in vivo. FEBS Lett. 585, 958-966. https://doi.org/10.1016/j.febslet.2011.01.019
  39. Spangle, J. M. and Münger, K. (2010) The human papillomavirus type 16 E6 oncoprotein activates mTORC1 signaling and increases protein synthesis. J. Virol. 84, 9398-9407. https://doi.org/10.1128/JVI.00974-10
  40. Tomao, F., Papa, A., Rossi, L., Zaccarelli, E., Caruso, D., Zoratto, F., Benedetti Panici, P. and Tomao, S. (2014) Angiogenesis and antiangiogenic agents in cervical cancer. Onco Targets Ther. 7, 2237-2248. https://doi.org/10.2147/OTT.S68286
  41. Vora, C. and Gupta, S. (2018) Targeted therapy in cervical cancer. ESMO Open 3, e000462.
  42. Wei, S., LiVolsi, V. A., Brose, M. S., Montone, K. T., Morrissette, J. J. and Baloch, Z. W. (2016) STK11 mutation identified in thyroid carcinoma. Endocr. Pathol. 27, 65-69. https://doi.org/10.1007/s12022-015-9411-6
  43. Wingo, S. N., Gallardo, T. D., Akbay, E. A., Liang, M.-C., Contreras, C. M., Boren, T., Shimamura, T., Miller, D. S., Sharpless, N. E., Bardeesy, N., Kwiatkowski, D. J., Schorge, J. O., Wong, K. K. and Castrillon, D. H. (2009) Somatic LKB1 mutations promote cervical cancer progression. PLoS One 4, e5137.
  44. Xu, H.-G., Zhai, Y.-X., Chen, J., Lu, Y., Wang, J.-W., Quan, C.-S., Zhao, R.-X., Xiao, X., He, Q., Werle, K. D., Kim, H. G., Lopez, R., Cui, R., Liang, J., Li, Y. L. and Xu, Z. X. (2015) LKB1 reduces ROS-mediated cell damage via activation of p38. Oncogene 34, 3848-3859. https://doi.org/10.1038/onc.2014.315
  45. Yoysungnoen, B., Bhattarakosol, P., Patumraj, S. and Changtam, C. (2015) Effects of tetrahydrocurcumin on hypoxia-inducible factor1α and vascular endothelial growth factor expression in cervical cancer cell-induced angiogenesis in nude mice. BioMed. Res. Int. 2015, 391748.
  46. Zagorska, A., Deak, M., Campbell, D. G., Banerjee, S., Hirano, M., Aizawa, S., Prescott, A. R. and Alessi, D. R. (2010) New roles for the LKB1-NUAK pathway in controlling myosin phosphatase complexes and cell adhesion. Sci. Signal. 3, ra25.
  47. Zhao, R.-X. and Xu, Z.-X. (2014) Targeting the LKB1 tumor suppressor. Curr. Drug Targets 15, 32-52. https://doi.org/10.2174/1389450114666140106095811
  48. Zhong, D., Guo, L., de Aguirre, I., Liu, X., Lamb, N., Sun, S.-Y., Gal, A. A., Vertino, P. M. and Zhou, W. (2006) LKB1 mutation in large cell carcinoma of the lung. Lung Cancer 53, 285-294. https://doi.org/10.1016/j.lungcan.2006.05.018
  49. Zhong, H., De Marzo, A. M., Laughner, E., Lim, M., Hilton, D. A., Zagzag, D., Buechler, P., Isaacs, W. B., Semenza, G. L. and Simons, J. W. (1999) Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res. 59, 5830-5835.