Acknowledgement
This work was supported by a grant from the National Cancer Center, Korea (NCC-2112500-1 and 2210450-1) and the Basic Science Research Program and the BK21 FOUR program through the NRF (NRF-2018R1A5A2023127, and NRF-2020R1A2C3004973).
References
- Amin, N., Khan, A., St. Johnston, D., Tomlinson, I., Martin, S., Brenman, J. and McNeill, H. (2009) LKB1 regulates polarity remodeling and adherens junction formation in the Drosophila eye. Proc. Natl. Acad. Sci. U. S. A. 106, 8941-8946. https://doi.org/10.1073/pnas.0812469106
- Burmeister, C. A., Khan, S. F., Schafer, G., Mbatani, N., Adams, T., Moodley, J. and Prince, S. (2022) Cervical cancer therapies: current challenges and future perspectives. Tumour Virus Res. 13, 200238.
- Contreras, C. M., Gurumurthy, S., Haynie, J. M., Shirley, L. J., Akbay, E. A., Wingo, S. N., Schorge, J. O., Broaddus, R. R., Wong, K.-K., Bardeesy, N. and Castrillon, D. H. (2008) Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas. Cancer Res. 68, 759-766. https://doi.org/10.1158/0008-5472.CAN-07-5014
- Daniell, J., Plazzer, J.-P., Perera, A. and Macrae, F. (2018) An exploration of genotype-phenotype link between Peutz-Jeghers syndrome and STK11: a review. Fam. Cancer 17, 421-427. https://doi.org/10.1007/s10689-017-0037-3
- Das, S., Babu, A., Medha, T., Ramanathan, G., Mukherjee, A. G., Wanjari, U. R., Murali, R., Kannampuzha, S., Gopalakrishnan, A. V., Renu, K., Sinha, D. and George Priya Doss, C. (2023) Molecular mechanisms augmenting resistance to current therapies in clinics among cervical cancer patients. Med. Oncol. 40, 149.
- Gao, Y., Xiao, Q., Ma, H., Li, L., Liu, J., Feng, Y., Fang, Z., Wu, J., Han, X., Zhang, J., Sun, Y., Wu, G., Padera, R., Chen, H., Wong, K. K., Ge, G. and Ji, H. (2010) LKB1 inhibits lung cancer progression through lysyl oxidase and extracellular matrix remodeling. Proc. Natl. Acad. Sci. U. S. A. 107, 18892-18897. https://doi.org/10.1073/pnas.1004952107
- Go, S.-H., Rho, S. B., Yang, D.-W., Kim, B.-R., Lee, C. H. and Lee, S.-H. (2022) HPV-18 E7 interacts with Elk-1 leading to elevation of the transcriptional activity of Elk-1 in cervical cancer. Biomol. Ther. (Seoul) 30, 593-602. https://doi.org/10.4062/biomolther.2022.108
- Goel, H. L. and Mercurio, A. M. (2013) VEGF targets the tumour cell. Nat. Rev. Cancer 13, 871-882. https://doi.org/10.1038/nrc3627
- Goyal, A., Neill, T., Owens, R. T., Schaefer, L. and Iozzo, R. V. (2014) Decorin activates AMPK, an energy sensor kinase, to induce autophagy in endothelial cells. Matrix Biol. 34, 46-54. https://doi.org/10.1016/j.matbio.2013.12.011
- Hardie, D. G. (2013) The LKB1-AMPK pathway-friend or foe in cancer? Cancer Cell 23, 131-132. https://doi.org/10.1016/j.ccr.2013.01.009
- Hemminki, A., Markie, D., Tomlinson, I., Avizienyte, E., Roth, S., Loukola, A., Bignell, G., Warren, W., Aminoff, M., Hoglund, P., Jarvinen, H., Kristo, P., Pelin, K., Ridanpaa, M., Salovaara, R., Toro, T., Bodmer, W., Olschwang, S., Olsen, A. S., Stratton, M. R., de la Chapelle, A. and Aaltonen, L. A. (1998) A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391, 184-187. https://doi.org/10.1038/34432
- Hou, M.-M., Liu, X., Wheler, J., Naing, A., Hong, D., Coleman, R. L., Tsimberidou, A., Janku, F., Zinner, R., Lu, K., Kurzrock, R. and Fu, S. (2014) Targeted PI3K/AKT/mTOR therapy for metastatic carcinomas of the cervix: a phase I clinical experience. Oncotarget 5, 11168-11179. https://doi.org/10.18632/oncotarget.2584
- Howie, H. L., Katzenellenbogen, R. A. and Galloway, D. A. (2009) Papillomavirus E6 proteins. Virology 384, 324-334. https://doi.org/10.1016/j.virol.2008.11.017
- Iyengar, P., Gandhi, A. Y., Granados, J., Guo, T., Gupta, A., Yu, J., Llano, E. M., Zhang, F., Gao, A., Kandathil, A., Williams, D., Gao, B., Girard, L., Malladi, V. S., Shelton, J. M., Evers, B. M., Hannan, R., Ahn, C., Minna, J. D. and Infante, R. E. (2023) Tumor loss-offunction mutations in STK11/LKB1 induce cachexia. JCI Insight 8, e165419. https://doi.org/10.1172/jci.insight.165419
- Jenne, D. E., Reomann, H., Nezu, J.-i., Friedel, W., Loff, S., Jeschke, R., Muller, O., Back, W. and Zimmer, M. (1998) Peutz-Jeghers syndrome is caused by mutations in a novel serine threoninekinase. Nat. Genet. 18, 38-43. https://doi.org/10.1038/ng0198-38
- Ji, H., Ramsey, M. R., Hayes, D. N., Fan, C., McNamara, K., Kozlowski, P., Torrice, C., Wu, M. C., Shimamura, T., Perera, S. A., Liang, M. C., Cai, D., Naumov, G. N., Bao, L., Contreras, C. M., Li, D., Chen, L., Krishnamurthy, J., Koivunen, J., Chirieac, L. R., Padera, R. F., Bronson, R. T., Lindeman, N. I., Christiani, D. C., Lin, X., Shapiro, G. I., Janne, P. A., Johnson, B. E., Meyerson, M., Kwiatkowski, D. J., Castrillon, D. H., Bardeesy, N., Sharpless, N. E. and Wong, K. K. (2007) LKB1 modulates lung cancer differentiation and metastasis. Nature 448, 807-810. https://doi.org/10.1038/nature06030
- Kang, G. J., Park, J. H., Kim, H. J., Kim, E. J., Kim, B., Byun, H. J., Yu, L., Nguyen, T. M., Nguyen, T. H., Kim, K. S., Huy, H. P., Rahman, M., Kim, Y. H., Jang, J. Y., Park, M. K., Lee, H., Choi, C. I., Lee, K., Han, H. K., Cho, J., Rho, S. B. and Lee, C. H. (2022) PRR16/Largen induces epithelial-mesenchymal transition through the interaction with ABI2 leading to the activation of ABL1 kinase. Biomol. Ther. (Seoul) 30, 340-347. https://doi.org/10.4062/biomolther.2022.066
- Karuman, P., Gozani, O., Odze, R. D., Zhou, X. C., Zhu, H., Shaw, R., Brien, T. P., Bozzuto, C. D., Ooi, D., Cantley, L. C. and Yuan, J. (2001) The Peutz-Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol. Cell 7, 1307-1319. https://doi.org/10.1016/S1097-2765(01)00258-1
- Kerbel, R. S. (2008) Tumor angiogenesis. N. Engl. J. Med. 358, 2039-2049. https://doi.org/10.1056/NEJMra0706596
- Kim, B.-R., Seo, S. H., Park, M. S., Lee, S.-H., Kwon, Y. and Rho, S. B. (2015) sMEK1 inhibits endothelial cell proliferation by attenuating VEGFR-2-dependent-Akt/eNOS/HIF-1α signaling pathways. Oncotarget 6, 31830.
- Koh, W.-J., Abu-Rustum, N. R., Bean, S., Bradley, K., Campos, S. M., Cho, K. R., Chon, H. S., Chu, C., Clark, R., Cohn, D., Crispens, M. A., Damast, S., Dorigo, O., Eifel, P. J., Fisher, C. M., Frederick, P., Gaffney, D. K., Han, E., Huh, W. K., Lurain, J. R., Mariani, A., Mutch, D., Nagel, C., Nekhlyudov, L., Fader, A. N., Remmenga, S. W., Reynolds, R. K., Tillmanns, T., Ueda, S., Wyse, E., Yashar, C. M., McMillian, N. R. and Scavone, J. L. (2019) Cervical cancer, version 3.2019, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw. 17, 64-84. https://doi.org/10.6004/jnccn.2019.0001
- Lee, J. H., Chun, T., Park, S.-Y. and Rho, S. B. (2008) Interferon regulatory factor-1 (IRF-1) regulates VEGF-induced angiogenesis in HUVECs. Biochim. Biophys. Acta 1783, 1654-1662. https://doi.org/10.1016/j.bbamcr.2008.04.006
- Lee, M.-S., Jeong, M.-H., Lee, H.-W., Han, H.-J., Ko, A., Hewitt, S. M., Kim, J.-H., Chun, K.-H., Chung, J.-Y., Lee, C., Cho, H. and Song, J. (2015) PI3K/AKT activation induces PTEN ubiquitination and destabilization accelerating tumourigenesis. Nat. Commun. 6, 7769.
- Li, S.-W., Wu, X.-L., Dong, C.-L., Xie, X.-Y., Wu, J.-F. and Zhang, X. (2015) The differential expression of OCT4 isoforms in cervical carcinoma. PLoS One 10, e0118033.
- Lyng, H. and Malinen, E. (2017) Hypoxia in cervical cancer: from biology to imaging. Clin. Transl. Imaging 5, 373-388. https://doi.org/10.1007/s40336-017-0238-7
- Mayerhofer, M., Valent, P., Sperr, W. R., Griffin, J. D. and Sillaber, C. (2002) BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1α, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood 100, 3767-3775. https://doi.org/10.1182/blood-2002-01-0109
- Nakada, D., Saunders, T. L. and Morrison, S. J. (2010) Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468, 653-658. https://doi.org/10.1038/nature09571
- Niizeki, H., Kobayashi, M., Horiuchi, I., Akakura, N., Chen, J., Wang, J., Hamada, J., Seth, P., Katoh, H.,Watanabe, H., Raz, A. and Hosokawa, M. (2002) Hypoxia enhances the expression of autocrine motility factor and the motility of human pancreatic cancer cells. Br. J. Cancer 86, 1914-1919. https://doi.org/10.1038/sj.bjc.6600331
- Ossipova, O., Bardeesy, N., DePinho, R. A. and Green, J. B. (2003) LKB1 (XEEK1) regulates Wnt signalling in vertebrate development. Nat. Cell Biol. 5, 889-894. https://doi.org/10.1038/ncb1048
- Park, M. S., Dong, S. M., Kim, B.-R., Seo, S. H., Kang, S., Lee, E.-J., Lee, S.-H. and Rho, S. B. (2014) Thioridazine inhibits angiogenesis and tumor growth by targeting the VEGFR-2/PI3K/mTOR pathway in ovarian cancer xenografts. Oncotarget 5, 4929-4934. https://doi.org/10.18632/oncotarget.2063
- Prasad, S. B., Yadav, S. S., Das, M., Modi, A., Kumari, S., Pandey, L. K., Singh, S., Pradhan, S. and Narayan, G. (2015) PI3K/AKT pathway-mediated regulation of p27 Kip1 is associated with cell cycle arrest and apoptosis in cervical cancer. Cell. Oncol. 38, 215-225. https://doi.org/10.1007/s13402-015-0224-x
- Rho, S. B., Byun, H.-J., Kim, B.-R. and Lee, C. H. (2022) Snail promotes cancer cell proliferation via its interaction with the BIRC3. Biomol. Ther. (Seoul) 30, 380-388. https://doi.org/10.4062/biomolther.2022.063
- Rho, S. B., Kim, M. J., Lee, J. S., Seol, W., Motegi, H., Kim, S. and Shiba, K. (1999) Genetic dissection of protein-protein interactions in multi-tRNA synthetase complex. Proc. Natl. Acad. Sci. U. S. A. 96, 4488-4493. https://doi.org/10.1073/pnas.96.8.4488
- Rho, S. B., Lee, S.-H., Byun, H.-J., Kim, B.-R. and Lee, C. H. (2020) IRF-1 inhibits angiogenic activity of HPV16 E6 oncoprotein in cervical cancer. Int. J. Mol. Sci. 21, 7622.
- Rodriguez-Freixinos, V. and Mackay, H. J. (2015) Breaking down the evidence for bevacizumab in advanced cervical cancer: past, present and future. Gynecol. Oncol. Res. Pract. 2, 8.
- Shackelford, D. B. and Shaw, R. J. (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9, 563-575. https://doi.org/10.1038/nrc2676
- Shan, T., Zhang, P., Liang, X., Bi, P., Yue, F. and Kuang, S. (2014) Lkb1 is indispensable for skeletal muscle development, regeneration, and satellite cell homeostasis. Stem Cells 32, 2893-2907. https://doi.org/10.1002/stem.1788
- Shorning, B. Y. and Clarke, A. R. (2011) LKB1 loss of function studied in vivo. FEBS Lett. 585, 958-966. https://doi.org/10.1016/j.febslet.2011.01.019
- Spangle, J. M. and Münger, K. (2010) The human papillomavirus type 16 E6 oncoprotein activates mTORC1 signaling and increases protein synthesis. J. Virol. 84, 9398-9407. https://doi.org/10.1128/JVI.00974-10
- Tomao, F., Papa, A., Rossi, L., Zaccarelli, E., Caruso, D., Zoratto, F., Benedetti Panici, P. and Tomao, S. (2014) Angiogenesis and antiangiogenic agents in cervical cancer. Onco Targets Ther. 7, 2237-2248. https://doi.org/10.2147/OTT.S68286
- Vora, C. and Gupta, S. (2018) Targeted therapy in cervical cancer. ESMO Open 3, e000462.
- Wei, S., LiVolsi, V. A., Brose, M. S., Montone, K. T., Morrissette, J. J. and Baloch, Z. W. (2016) STK11 mutation identified in thyroid carcinoma. Endocr. Pathol. 27, 65-69. https://doi.org/10.1007/s12022-015-9411-6
- Wingo, S. N., Gallardo, T. D., Akbay, E. A., Liang, M.-C., Contreras, C. M., Boren, T., Shimamura, T., Miller, D. S., Sharpless, N. E., Bardeesy, N., Kwiatkowski, D. J., Schorge, J. O., Wong, K. K. and Castrillon, D. H. (2009) Somatic LKB1 mutations promote cervical cancer progression. PLoS One 4, e5137.
- Xu, H.-G., Zhai, Y.-X., Chen, J., Lu, Y., Wang, J.-W., Quan, C.-S., Zhao, R.-X., Xiao, X., He, Q., Werle, K. D., Kim, H. G., Lopez, R., Cui, R., Liang, J., Li, Y. L. and Xu, Z. X. (2015) LKB1 reduces ROS-mediated cell damage via activation of p38. Oncogene 34, 3848-3859. https://doi.org/10.1038/onc.2014.315
- Yoysungnoen, B., Bhattarakosol, P., Patumraj, S. and Changtam, C. (2015) Effects of tetrahydrocurcumin on hypoxia-inducible factor1α and vascular endothelial growth factor expression in cervical cancer cell-induced angiogenesis in nude mice. BioMed. Res. Int. 2015, 391748.
- Zagorska, A., Deak, M., Campbell, D. G., Banerjee, S., Hirano, M., Aizawa, S., Prescott, A. R. and Alessi, D. R. (2010) New roles for the LKB1-NUAK pathway in controlling myosin phosphatase complexes and cell adhesion. Sci. Signal. 3, ra25.
- Zhao, R.-X. and Xu, Z.-X. (2014) Targeting the LKB1 tumor suppressor. Curr. Drug Targets 15, 32-52. https://doi.org/10.2174/1389450114666140106095811
- Zhong, D., Guo, L., de Aguirre, I., Liu, X., Lamb, N., Sun, S.-Y., Gal, A. A., Vertino, P. M. and Zhou, W. (2006) LKB1 mutation in large cell carcinoma of the lung. Lung Cancer 53, 285-294. https://doi.org/10.1016/j.lungcan.2006.05.018
- Zhong, H., De Marzo, A. M., Laughner, E., Lim, M., Hilton, D. A., Zagzag, D., Buechler, P., Isaacs, W. B., Semenza, G. L. and Simons, J. W. (1999) Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res. 59, 5830-5835.