DOI QR코드

DOI QR Code

Effect of FTY-720 on Pulmonary Fibrosis in Mice via the TGF-β1 Signaling Pathway and Autophagy

  • Yuying Jin (Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University) ;
  • Weidong Liu (Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University) ;
  • Ge Gao (Department of Life Sciences, Hainan University of Biology) ;
  • Yilan Song (Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University) ;
  • Hanye Liu (Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University) ;
  • Liangchang Li (Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University) ;
  • Jiaxu Zhou (Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University) ;
  • Guanghai Yan (Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University) ;
  • Hong Cui (Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University)
  • Received : 2022.09.22
  • Accepted : 2023.01.11
  • Published : 2023.07.01

Abstract

We investigated whether FTY-720 might have an effect on bleomycin-induced pulmonary fibrosis through inhibiting TGF-β1 pathway, and up-regulating autophagy. The pulmonary fibrosis was induced by bleomycin. FTY-720 (1 mg/kg) drug was intraperitoneally injected into mice. Histological changes and inflammatory factors were observed, and EMT and autophagy protein markers were studied by immunohistochemistry and immunofluorescence. The effects of bleomycin on MLE-12 cells were detected by MTT assay and flow cytometry, and the related molecular mechanisms were studied by Western Blot. FTY-720 considerably attenuated bleomycin-induced disorganization of alveolar tissue, extracellular collagen deposition, and α-SMA and E-cadherin levels in mice. The levels of IL-1β, TNF-α, and IL-6 cytokines were attenuated in bronchoalveolar lavage fluid, as well as protein content and leukocyte count. COL1A1 and MMP9 protein expressions in lung tissue were significantly reduced. Additionally, FTY-720 treatment effectively inhibited the expressions of key proteins in TGF-β1/TAK1/P38MAPK pathway and regulated autophagy proteins. Similar results were additionally found in cellular assays with mouse alveolar epithelial cells. Our study provides proof for a new mechanism for FTY-720 to suppress pulmonary fibrosis. FTY-720 is also a target for treating pulmonary fibrosis.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (grant number 82260002 & 81460001), the Natural Science Research Foundation of Jilin Province for Sciences and Technology (grant number 20220101353JC), and the Education Department Project of Jilin (grant number JJKH20220546KJ).

References

  1. Bail, K., Notz, Q., Rovituso, D. M., Schampel, A., Wunsch, M., Koeniger, T., Schropp, V., Bharti, R., Scholz, C. J., Foerstner, K. U., Kleinschnitz, C. and Kuerten, S. (2017) Differential effects of FTY720 on the B cell compartment in a mouse model of multiple sclerosis. J. Neuroinflammation 14, 148.
  2. Bao, C., Yang, Z., Cai, Q., Li, Q., Li, H. and Shu, B. (2019) Incremental load training improves renal fibrosis by regulating the TGFbeta1/TAK1/MKK3/p38MAPK signaling pathway and inducing the activation of autophagy in aged mice. Int. J. Mol. Med. 44, 1677-1686.
  3. Biesemann, N., Mendler, L., Kostin, S., Wietelmann, A., Borchardt, T. and Braun, T. (2015) Myostatin induces interstitial fibrosis in the heart via TAK1 and p38. Cell Tissue Res. 361, 779-787. https://doi.org/10.1007/s00441-015-2139-2
  4. Booth, L., Roberts, J. L., Spiegel, S., Poklepovic, A. and Dent, P. (2019) Fingolimod augments Pemetrexed killing of non-small cell lung cancer and overcomes resistance to ERBB inhibition. Cancer Biol. Ther. 20, 597-607.
  5. Choi, A. M., Ryter, S. W. and Levine, B. (2013) Autophagy in human health and disease. N. Engl. J. Med. 368, 651-662. https://doi.org/10.1056/NEJMra1205406
  6. Cohen, P. L. and McCulloch, A. (2020) Fingolimod reduces salivary infiltrates and increases salivary secretion in a murine Sjogren's model. J. Autoimmun. 115, 102549.
  7. Cui, L., Li, C., Gao, G., Zhuo, Y., Yang, L., Cui, N. and Zhang, S. (2019) FTY720 inhibits the activation of pancreatic stellate cells by promoting apoptosis and suppressing autophagy via the AMPK/mTOR pathway. Life Sci. 217, 243-250. https://doi.org/10.1016/j.lfs.2018.12.019
  8. Deretic, V. and Levine, B. (2018) Autophagy balances inflammation in innate immunity. Autophagy 14, 243-251. https://doi.org/10.1080/15548627.2017.1402992
  9. Divya, T., Sureshkumar, A. and Sudhandiran, G. (2017) Autophagy induction by celastrol augments protection against bleomycin-induced experimental pulmonary fibrosis in rats: role of adaptor protein p62/ SQSTM1. Pulm. Pharmacol. Ther. 45, 47-61. https://doi.org/10.1016/j.pupt.2017.04.003
  10. Gardner, A., Fisher, A. J., Richter, C., Johnson, G. E., Moisey, E. J., Brodlie, M., Ward, C., Krippner-Heidenreich, A., Mann, D. A. and Borthwick, L. A. (2012) The critical role of TAK1 in accentuated epithelial to mesenchymal transition in obliterative bronchiolitis after lung transplantation. Am. J. Pathol. 180, 2293-2308. https://doi.org/10.1016/j.ajpath.2012.02.022
  11. Gui, X., Chen, H., Cai, H., Sun, L. and Gu, L. (2018) Leptin promotes pulmonary fibrosis development by inhibiting autophagy via PI3K/Akt/mTOR pathway. Biochem. Biophys. Res. Commun. 498, 660-666. https://doi.org/10.1016/j.bbrc.2018.03.039
  12. Hamanaka, R. B. and Mutlu, G. M. (2021) Metabolic requirements of pulmonary fibrosis: role of fibroblast metabolism. FEBS J. 288, 6331-6352. https://doi.org/10.1111/febs.15693
  13. Hijmans, R. S., Rasmussen, D. G., Yazdani, S., Navis, G., van Goor, H., Karsdal, M. A., Genovese, F. and van den Born, J. (2017) Urinary collagen degradation products as early markers of progressive renal fibrosis. J. Transl. Med. 15, 63.
  14. Hill, C., Li, J., Liu, D., Conforti, F., Brereton, C. J., Yao, L., Zhou, Y., Alzetani, A., Chee, S. J., Marshall, B. G., Fletcher, S. V., Hancock, D., Ottensmeier, C. H., Steele, A. J., Downward, J., Richeldi, L., Lu, X., Davies, D. E., Jones, M. G. and Wang, Y. (2019) Autophagy inhibition-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in pulmonary fibrosis. Cell Death Dis. 10, 591.
  15. Hu, H. H., Chen, D. Q., Wang, Y. N., Feng, Y. L., Cao, G., Vaziri, N. D. and Zhao, Y. Y. (2018) New insights into TGF-β/Smad signaling in tissue fibrosis. Chem. Biol. Interact. 292, 76-83. https://doi.org/10.1016/j.cbi.2018.07.008
  16. Hubner, R. H., Gitter, W., El Mokhtari, N. E., Mathiak, M., Both, M., Bolte, H., Freitag-Wolf, S. and Bewig, B. (2008) Standardized quantification of pulmonary fibrosis in histological samples. Biotechniques 44, 507-511, 514-507.
  17. Huwiler, A. and Zangemeister-Wittke, U. (2018) The sphingosine 1-phosphate receptor modulator fingolimod as a therapeutic agent: Recent findings and new perspectives. Pharmacol. Ther. 185, 34-49. https://doi.org/10.1016/j.pharmthera.2017.11.001
  18. Inokuchi-Shimizu, S., Park, E. J., Roh, Y. S., Yang, L., Zhang, B., Song, J., Liang, S., Pimienta, M., Taniguchi, K., Wu, X., Asahina, K., Lagakos, W., Mackey, M. R., Akira, S., Ellisman, M. H., Sears, D. D., Olefsky, J. M., Karin, M., Brenner, D. A. and Seki, E. (2014) TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis. J. Clin. Invest. 124, 3566-3578. https://doi.org/10.1172/JCI74068
  19. Inui, N., Sakai, S. and Kitagawa, M. (2021) Molecular pathogenesis of pulmonary fibrosis, with focus on pathways related to TGF-beta and the ubiquitin-proteasome pathway. Int. J. Mol. Sci. 22, 6107.
  20. Iwazu, Y., Muto, S., Ioka, T., Watanabe, Y., Iwazu, K., Kusano, E. and Nagata, D. (2018) Multiple sclerosis drug fingolimod induces thrombotic microangiopathy in deoxycorticosterone acetate/salt hypertension. Hypertension 72, 776-784. https://doi.org/10.1161/HYPERTENSIONAHA.117.10655
  21. Jang, S., Ryu, S. M., Lee, J., Lee, H., Hong, S. H., Ha, K. S., Park, W. S., Han, E. T. and Yang, S. R. (2019) Bleomycin inhibits proliferation via schlafen-mediated cell cycle arrest in mouse alveolar epithelial cells. Tuberc. Respir. Dis. (Seoul) 82, 133-142. https://doi.org/10.4046/trd.2017.0124
  22. Jiang, F., Li, S., Jiang, Y., Chen, Z., Wang, T. and Liu, W. (2021) Fluorofenidone attenuates paraquatinduced pulmonary fibrosis by regulating the PI3K/Akt/mTOR signaling pathway and autophagy. Mol. Med. Rep. 23, 405.
  23. Kim, K. K., Dotson, M. R., Agarwal, M., Yang, J., Bradley, P. B., Subbotina, N., Osterholzer, J. J. and Sisson, T. H. (2018) Efferocytosis of apoptotic alveolar epithelial cells is sufficient to initiate lung fibrosis. Cell Death Dis. 9, 1056.
  24. Kim, S. I., Kwak, J. H., Zachariah, M., He, Y., Wang, L. and Choi, M. E. (2007) TGF-beta-activated kinase 1 and TAK1-binding protein 1 cooperate to mediate TGF-beta1-induced MKK3-p38 MAPK activation and stimulation of type I collagen. Am. J. Physiol. Renal Physiol. 292, F1471-F1478. https://doi.org/10.1152/ajprenal.00485.2006
  25. King, T. E., Jr., Pardo, A. and Selman, M. (2011) Idiopathic pulmonary fibrosis. Lancet 378, 1949-1961. https://doi.org/10.1016/S0140-6736(11)60052-4
  26. Kuwano, K., Araya, J., Hara, H., Minagawa, S., Takasaka, N., Ito, S., Kobayashi, K. and Nakayama, K. (2016) Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Respir. Investig. 54, 397-406. https://doi.org/10.1016/j.resinv.2016.03.010
  27. Li, S. X., Li, C., Pang, X. R., Zhang, J., Yu, G. C., Yeo, A. J., Lavin, M. F., Shao, H., Jia, Q. and Peng, C. (2021) Metformin attenuates silica-induced pulmonary fibrosis by activating autophagy via the AMPK-mTOR signaling pathway. Front. Pharmacol. 12, 719589.
  28. Liao, S. X., Sun, P. P., Gu, Y. H., Rao, X. M., Zhang, L. Y. and Ou-Yang, Y. (2019) Autophagy and pulmonary disease. Ther. Adv. Respir. Dis. 13, 1753466619890538.
  29. Lin, H. and Jiang, S. (2015) Combined pulmonary fibrosis and emphysema (CPFE): an entity different from emphysema or pulmonary fibrosis alone. J. Thorac. Dis. 7, 767-779.
  30. Lu, Y., Zhong, W., Liu, Y., Chen, W., Zhang, J., Zeng, Z., Huang, H., Qiao, Y., Wan, X., Meng, X., Cai, S. and Dong, H. (2022) Anti-PDL1 antibody alleviates pulmonary fibrosis by inducing autophagy via inhibition of the PI3K/Akt/mTOR pathway. Int. Immunopharmacol. 104, 108504.
  31. Luo, R., Cheng, Y., Chang, D., Liu, T., Liu, L., Pei, G., Zhang, N., Wang, Z., Guo, K., Chen, W., Li, M., Fan, L., Zhang, C., Li, Y., Dai, W., Zuo, M., Xu, Y., Yao, Y., Ge, S. and Xu, G. (2021) Tertiary lymphoid organs are associated with the progression of kidney damage and regulated by interleukin-17A. Theranostics 11, 117-131. https://doi.org/10.7150/thno.48624
  32. Martin-Montanez, E., Pavia, J., Valverde, N., Boraldi, F., Lara, E., Oliver, B., Hurtado-Guerrero, I., Fernandez, O. and Garcia-Fernandez, M. (2019) The S1P mimetic fingolimod phosphate regulates mitochondrial oxidative stress in neuronal cells. Free Radic. Biol. Med. 137, 116-130. https://doi.org/10.1016/j.freeradbiomed.2019.04.022
  33. Martinez, F. J., Collard, H. R., Pardo, A., Raghu, G., Richeldi, L., Selman, M., Swigris, J. J., Taniguchi, H. and Wells, A. U. (2017) Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Primers 3, 17074.
  34. Parimon, T., Yao, C., Stripp, B. R., Noble, P. W. and Chen, P. (2020) Alveolar epithelial type II cells as drivers of lung fibrosis in idiopathic pulmonary fibrosis. Int. J. Mol. Sci. 21, 2269.
  35. Paudel, Y. N., Angelopoulou, E., Piperi, C., Gnatkovsky, V., Othman, I. and Shaikh, M. F. (2020) From the molecular mechanism to preclinical results: anti-epileptic effects of fingolimod. Curr. Neuropharmacol. 18, 1126-1137. https://doi.org/10.2174/1570159X18666200420125017
  36. Racanelli, A. C., Kikkers, S. A., Choi, A. M. K. and Cloonan, S. M. (2018) Autophagy and inflammation in chronic respiratory disease. Autophagy 14, 221-232. https://doi.org/10.1080/15548627.2017.1389823
  37. Rackow, A. R., Nagel, D. J., McCarthy, C., Judge, J., Lacy, S., Freeberg, M. A. T., Thatcher, T. H., Kottmann, R. M. and Sime, P. J. (2020) The self-fulfilling prophecy of pulmonary fibrosis: a selective inspection of pathological signalling loops. Eur. Respir. J. 56, 2000075.
  38. Rosenbloom, J., Macarak, E., Piera-Velazquez, S. and Jimenez, S. A. (2017) Human fibrotic diseases: current challenges in fibrosis research. Methods Mol. Biol. 1627, 1-23. https://doi.org/10.1007/978-1-4939-7113-8_1
  39. Selman, M., King, T. E. and Pardo, A. (2001) Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann. Intern. Med. 134, 136-151. https://doi.org/10.7326/0003-4819-134-2-200101160-00015
  40. Shang, D., Wang, L., Klionsky, D. J., Cheng, H. and Zhou, R. (2021) Sex differences in autophagy-mediated diseases: toward precision medicine. Autophagy 17, 1065-1076. https://doi.org/10.1080/15548627.2020.1752511
  41. Sharim, J., Tashjian, R., Golzy, N. and Pouratian, N. (2016) Glioblastoma following treatment with fingolimod for relapsing-remitting multiple sclerosis. J. Clin. Neurosci. 30, 166-168. https://doi.org/10.1016/j.jocn.2016.02.003
  42. Tao, N., Li, K., Liu, J., Fan, G. and Sun, T. (2021) Liproxstatin-1 alleviates bleomycin-induced alveolar epithelial cells injury and mice pulmonary fibrosis via attenuating inflammation, reshaping redox equilibrium, and suppressing ROS/p53/alpha-SMA pathway. Biochem. Biophys. Res. Commun. 551, 133-139. https://doi.org/10.1016/j.bbrc.2021.02.127
  43. Tesseraud, S., Avril, P., Bonnet, M., Bonnieu, A., Cassar-Malek, I., Chabi, B., Dessauge, F., Gabillard, J. C., Perruchot, M. H. and Seiliez, I. (2021) Autophagy in farm animals: current knowledge and future challenges. Autophagy 17, 1809-1827. https://doi.org/10.1080/15548627.2020.1798064
  44. Tian, T., Zhang, J., Zhu, X., Wen, S., Shi, D. and Zhou, H. (2017) FTY720 ameliorates renal fibrosis by simultaneously affecting leucocyte recruitment and TGF-β signalling in fibroblasts. Clin. Exp. Immunol. 190, 68-78. https://doi.org/10.1111/cei.13003
  45. Velagacherla, V., Mehta, C. H., Nayak, Y. and Nayak, U. Y. (2022) Molecular pathways and role of epigenetics in the idiopathic pulmonary fibrosis. Life Sci. 291, 120283.
  46. Wang, J., Wang, H., Fang, F., Fang, C., Wang, S., Lu, C. and Liu, N. (2021a) Danggui Buxue Tang ameliorates bleomycin-induced pulmonary fibrosis by suppressing the TLR4/NLRP3 signaling pathway in rats. Evid. Based Complement. Alternat. Med. 2021, 8030143.
  47. Wang, Z., Li, X., Chen, H., Han, L., Ji, X., Wang, Q., Wei, L., Miu, Y., Wang, J., Mao, J. and Zhang, Z. (2021b) Resveratrol alleviates bleomycin-induced pulmonary fibrosis via suppressing HIF-1α and NF-κB expression. Aging 13, 4605-4616. https://doi.org/10.18632/aging.202420
  48. Wu, L., Mei, L., Chong, L., Huang, Y., Li, Y., Chu, M. and Yang, X. (2016) Olmesartan ameliorates pressure overload-induced cardiac remodeling through inhibition of TAK1/p38 signaling in mice. Life Sci. 145, 121-126. https://doi.org/10.1016/j.lfs.2015.12.034
  49. Xiang, H., Zhang, J., Lin, C., Zhang, L., Liu, B. and Ouyang, L. (2020) Targeting autophagy-related protein kinases for potential therapeutic purpose. Acta Pharm. Sin. B 10, 569-581. https://doi.org/10.1016/j.apsb.2019.10.003
  50. Xie, L. and Zeng, Y. (2020) Therapeutic potential of exosomes in pulmonary fibrosis. Front. Pharmacol. 11, 590972.
  51. Ye, Z. and Hu, Y. (2021) TGFbeta1: gentlemanly orchestrator in idiopathic pulmonary fibrosis (review). Int. J. Mol. Med. 48, 132.
  52. Yuan, J., Li, P., Pan, H., Xu, Q., Xu, T., Li, Y., Wei, D., Mo, Y., Zhang, Q., Chen, J. and Ni, C. (2021) miR-770-5p inhibits the activation of pulmonary fibroblasts and silica-induced pulmonary fibrosis through targeting TGFBR1. Ecotoxicol. Environ. Saf. 220, 112372.
  53. Zhang, L., Dong, Y., Wang, Y., Hu, W., Dong, S. and Chen, Y. (2020a) Sphingosine-1-phosphate (S1P) receptors: promising drug targets for treating bone-related diseases. J. Cell. Mol. Med. 24, 4389-4401. https://doi.org/10.1111/jcmm.15155
  54. Zhang, L., Tong, X., Huang, J., Wu, M., Zhang, S., Wang, D., Liu, S. and Fan, H. (2020b) Fisetin alleviated bleomycin-induced pulmonary fibrosis partly by rescuing alveolar epithelial cells from senescence. Front. Pharmacol. 11, 553690.
  55. Zhang, X., Mao, Y., Peng, W., Liu, H., Liang, L., Wang, D., Liu, L., Zhou, Y., Zhang, F., Xiao, Y., Shi, M., Shao, S., Wang, Y., Guo, B. and Zhang, X. (2021) Autophagy-related protein EI24 delays the development of pulmonary fibrosis by promoting autophagy. Life Sci. 264, 118664.
  56. Zhao, H., Wang, Y., Qiu, T., Liu, W. and Yao, P. (2020) Autophagy, an important therapeutic target for pulmonary fibrosis diseases. Clin. Chim. Acta 502, 139-147. https://doi.org/10.1016/j.cca.2019.12.016
  57. Zhao, J. L., Zhang, T., Shao, X., Zhu, J. J. and Guo, M. Z. (2019) Curcumin ameliorates peritoneal fibrosis via inhibition of transforming growth factor-activated kinase 1 (TAK1) pathway in a rat model of peritoneal dialysis. BMC Complement. Altern. Med. 19, 280.