Acknowledgement
This work was supported by the National Natural Science Foundation of China (grant number 82260002 & 81460001), the Natural Science Research Foundation of Jilin Province for Sciences and Technology (grant number 20220101353JC), and the Education Department Project of Jilin (grant number JJKH20220546KJ).
References
- Bail, K., Notz, Q., Rovituso, D. M., Schampel, A., Wunsch, M., Koeniger, T., Schropp, V., Bharti, R., Scholz, C. J., Foerstner, K. U., Kleinschnitz, C. and Kuerten, S. (2017) Differential effects of FTY720 on the B cell compartment in a mouse model of multiple sclerosis. J. Neuroinflammation 14, 148.
- Bao, C., Yang, Z., Cai, Q., Li, Q., Li, H. and Shu, B. (2019) Incremental load training improves renal fibrosis by regulating the TGFbeta1/TAK1/MKK3/p38MAPK signaling pathway and inducing the activation of autophagy in aged mice. Int. J. Mol. Med. 44, 1677-1686.
- Biesemann, N., Mendler, L., Kostin, S., Wietelmann, A., Borchardt, T. and Braun, T. (2015) Myostatin induces interstitial fibrosis in the heart via TAK1 and p38. Cell Tissue Res. 361, 779-787. https://doi.org/10.1007/s00441-015-2139-2
- Booth, L., Roberts, J. L., Spiegel, S., Poklepovic, A. and Dent, P. (2019) Fingolimod augments Pemetrexed killing of non-small cell lung cancer and overcomes resistance to ERBB inhibition. Cancer Biol. Ther. 20, 597-607.
- Choi, A. M., Ryter, S. W. and Levine, B. (2013) Autophagy in human health and disease. N. Engl. J. Med. 368, 651-662. https://doi.org/10.1056/NEJMra1205406
- Cohen, P. L. and McCulloch, A. (2020) Fingolimod reduces salivary infiltrates and increases salivary secretion in a murine Sjogren's model. J. Autoimmun. 115, 102549.
- Cui, L., Li, C., Gao, G., Zhuo, Y., Yang, L., Cui, N. and Zhang, S. (2019) FTY720 inhibits the activation of pancreatic stellate cells by promoting apoptosis and suppressing autophagy via the AMPK/mTOR pathway. Life Sci. 217, 243-250. https://doi.org/10.1016/j.lfs.2018.12.019
- Deretic, V. and Levine, B. (2018) Autophagy balances inflammation in innate immunity. Autophagy 14, 243-251. https://doi.org/10.1080/15548627.2017.1402992
- Divya, T., Sureshkumar, A. and Sudhandiran, G. (2017) Autophagy induction by celastrol augments protection against bleomycin-induced experimental pulmonary fibrosis in rats: role of adaptor protein p62/ SQSTM1. Pulm. Pharmacol. Ther. 45, 47-61. https://doi.org/10.1016/j.pupt.2017.04.003
- Gardner, A., Fisher, A. J., Richter, C., Johnson, G. E., Moisey, E. J., Brodlie, M., Ward, C., Krippner-Heidenreich, A., Mann, D. A. and Borthwick, L. A. (2012) The critical role of TAK1 in accentuated epithelial to mesenchymal transition in obliterative bronchiolitis after lung transplantation. Am. J. Pathol. 180, 2293-2308. https://doi.org/10.1016/j.ajpath.2012.02.022
- Gui, X., Chen, H., Cai, H., Sun, L. and Gu, L. (2018) Leptin promotes pulmonary fibrosis development by inhibiting autophagy via PI3K/Akt/mTOR pathway. Biochem. Biophys. Res. Commun. 498, 660-666. https://doi.org/10.1016/j.bbrc.2018.03.039
- Hamanaka, R. B. and Mutlu, G. M. (2021) Metabolic requirements of pulmonary fibrosis: role of fibroblast metabolism. FEBS J. 288, 6331-6352. https://doi.org/10.1111/febs.15693
- Hijmans, R. S., Rasmussen, D. G., Yazdani, S., Navis, G., van Goor, H., Karsdal, M. A., Genovese, F. and van den Born, J. (2017) Urinary collagen degradation products as early markers of progressive renal fibrosis. J. Transl. Med. 15, 63.
- Hill, C., Li, J., Liu, D., Conforti, F., Brereton, C. J., Yao, L., Zhou, Y., Alzetani, A., Chee, S. J., Marshall, B. G., Fletcher, S. V., Hancock, D., Ottensmeier, C. H., Steele, A. J., Downward, J., Richeldi, L., Lu, X., Davies, D. E., Jones, M. G. and Wang, Y. (2019) Autophagy inhibition-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in pulmonary fibrosis. Cell Death Dis. 10, 591.
- Hu, H. H., Chen, D. Q., Wang, Y. N., Feng, Y. L., Cao, G., Vaziri, N. D. and Zhao, Y. Y. (2018) New insights into TGF-β/Smad signaling in tissue fibrosis. Chem. Biol. Interact. 292, 76-83. https://doi.org/10.1016/j.cbi.2018.07.008
- Hubner, R. H., Gitter, W., El Mokhtari, N. E., Mathiak, M., Both, M., Bolte, H., Freitag-Wolf, S. and Bewig, B. (2008) Standardized quantification of pulmonary fibrosis in histological samples. Biotechniques 44, 507-511, 514-507.
- Huwiler, A. and Zangemeister-Wittke, U. (2018) The sphingosine 1-phosphate receptor modulator fingolimod as a therapeutic agent: Recent findings and new perspectives. Pharmacol. Ther. 185, 34-49. https://doi.org/10.1016/j.pharmthera.2017.11.001
- Inokuchi-Shimizu, S., Park, E. J., Roh, Y. S., Yang, L., Zhang, B., Song, J., Liang, S., Pimienta, M., Taniguchi, K., Wu, X., Asahina, K., Lagakos, W., Mackey, M. R., Akira, S., Ellisman, M. H., Sears, D. D., Olefsky, J. M., Karin, M., Brenner, D. A. and Seki, E. (2014) TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis. J. Clin. Invest. 124, 3566-3578. https://doi.org/10.1172/JCI74068
- Inui, N., Sakai, S. and Kitagawa, M. (2021) Molecular pathogenesis of pulmonary fibrosis, with focus on pathways related to TGF-beta and the ubiquitin-proteasome pathway. Int. J. Mol. Sci. 22, 6107.
- Iwazu, Y., Muto, S., Ioka, T., Watanabe, Y., Iwazu, K., Kusano, E. and Nagata, D. (2018) Multiple sclerosis drug fingolimod induces thrombotic microangiopathy in deoxycorticosterone acetate/salt hypertension. Hypertension 72, 776-784. https://doi.org/10.1161/HYPERTENSIONAHA.117.10655
- Jang, S., Ryu, S. M., Lee, J., Lee, H., Hong, S. H., Ha, K. S., Park, W. S., Han, E. T. and Yang, S. R. (2019) Bleomycin inhibits proliferation via schlafen-mediated cell cycle arrest in mouse alveolar epithelial cells. Tuberc. Respir. Dis. (Seoul) 82, 133-142. https://doi.org/10.4046/trd.2017.0124
- Jiang, F., Li, S., Jiang, Y., Chen, Z., Wang, T. and Liu, W. (2021) Fluorofenidone attenuates paraquatinduced pulmonary fibrosis by regulating the PI3K/Akt/mTOR signaling pathway and autophagy. Mol. Med. Rep. 23, 405.
- Kim, K. K., Dotson, M. R., Agarwal, M., Yang, J., Bradley, P. B., Subbotina, N., Osterholzer, J. J. and Sisson, T. H. (2018) Efferocytosis of apoptotic alveolar epithelial cells is sufficient to initiate lung fibrosis. Cell Death Dis. 9, 1056.
- Kim, S. I., Kwak, J. H., Zachariah, M., He, Y., Wang, L. and Choi, M. E. (2007) TGF-beta-activated kinase 1 and TAK1-binding protein 1 cooperate to mediate TGF-beta1-induced MKK3-p38 MAPK activation and stimulation of type I collagen. Am. J. Physiol. Renal Physiol. 292, F1471-F1478. https://doi.org/10.1152/ajprenal.00485.2006
- King, T. E., Jr., Pardo, A. and Selman, M. (2011) Idiopathic pulmonary fibrosis. Lancet 378, 1949-1961. https://doi.org/10.1016/S0140-6736(11)60052-4
- Kuwano, K., Araya, J., Hara, H., Minagawa, S., Takasaka, N., Ito, S., Kobayashi, K. and Nakayama, K. (2016) Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Respir. Investig. 54, 397-406. https://doi.org/10.1016/j.resinv.2016.03.010
- Li, S. X., Li, C., Pang, X. R., Zhang, J., Yu, G. C., Yeo, A. J., Lavin, M. F., Shao, H., Jia, Q. and Peng, C. (2021) Metformin attenuates silica-induced pulmonary fibrosis by activating autophagy via the AMPK-mTOR signaling pathway. Front. Pharmacol. 12, 719589.
- Liao, S. X., Sun, P. P., Gu, Y. H., Rao, X. M., Zhang, L. Y. and Ou-Yang, Y. (2019) Autophagy and pulmonary disease. Ther. Adv. Respir. Dis. 13, 1753466619890538.
- Lin, H. and Jiang, S. (2015) Combined pulmonary fibrosis and emphysema (CPFE): an entity different from emphysema or pulmonary fibrosis alone. J. Thorac. Dis. 7, 767-779.
- Lu, Y., Zhong, W., Liu, Y., Chen, W., Zhang, J., Zeng, Z., Huang, H., Qiao, Y., Wan, X., Meng, X., Cai, S. and Dong, H. (2022) Anti-PDL1 antibody alleviates pulmonary fibrosis by inducing autophagy via inhibition of the PI3K/Akt/mTOR pathway. Int. Immunopharmacol. 104, 108504.
- Luo, R., Cheng, Y., Chang, D., Liu, T., Liu, L., Pei, G., Zhang, N., Wang, Z., Guo, K., Chen, W., Li, M., Fan, L., Zhang, C., Li, Y., Dai, W., Zuo, M., Xu, Y., Yao, Y., Ge, S. and Xu, G. (2021) Tertiary lymphoid organs are associated with the progression of kidney damage and regulated by interleukin-17A. Theranostics 11, 117-131. https://doi.org/10.7150/thno.48624
- Martin-Montanez, E., Pavia, J., Valverde, N., Boraldi, F., Lara, E., Oliver, B., Hurtado-Guerrero, I., Fernandez, O. and Garcia-Fernandez, M. (2019) The S1P mimetic fingolimod phosphate regulates mitochondrial oxidative stress in neuronal cells. Free Radic. Biol. Med. 137, 116-130. https://doi.org/10.1016/j.freeradbiomed.2019.04.022
- Martinez, F. J., Collard, H. R., Pardo, A., Raghu, G., Richeldi, L., Selman, M., Swigris, J. J., Taniguchi, H. and Wells, A. U. (2017) Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Primers 3, 17074.
- Parimon, T., Yao, C., Stripp, B. R., Noble, P. W. and Chen, P. (2020) Alveolar epithelial type II cells as drivers of lung fibrosis in idiopathic pulmonary fibrosis. Int. J. Mol. Sci. 21, 2269.
- Paudel, Y. N., Angelopoulou, E., Piperi, C., Gnatkovsky, V., Othman, I. and Shaikh, M. F. (2020) From the molecular mechanism to preclinical results: anti-epileptic effects of fingolimod. Curr. Neuropharmacol. 18, 1126-1137. https://doi.org/10.2174/1570159X18666200420125017
- Racanelli, A. C., Kikkers, S. A., Choi, A. M. K. and Cloonan, S. M. (2018) Autophagy and inflammation in chronic respiratory disease. Autophagy 14, 221-232. https://doi.org/10.1080/15548627.2017.1389823
- Rackow, A. R., Nagel, D. J., McCarthy, C., Judge, J., Lacy, S., Freeberg, M. A. T., Thatcher, T. H., Kottmann, R. M. and Sime, P. J. (2020) The self-fulfilling prophecy of pulmonary fibrosis: a selective inspection of pathological signalling loops. Eur. Respir. J. 56, 2000075.
- Rosenbloom, J., Macarak, E., Piera-Velazquez, S. and Jimenez, S. A. (2017) Human fibrotic diseases: current challenges in fibrosis research. Methods Mol. Biol. 1627, 1-23. https://doi.org/10.1007/978-1-4939-7113-8_1
- Selman, M., King, T. E. and Pardo, A. (2001) Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann. Intern. Med. 134, 136-151. https://doi.org/10.7326/0003-4819-134-2-200101160-00015
- Shang, D., Wang, L., Klionsky, D. J., Cheng, H. and Zhou, R. (2021) Sex differences in autophagy-mediated diseases: toward precision medicine. Autophagy 17, 1065-1076. https://doi.org/10.1080/15548627.2020.1752511
- Sharim, J., Tashjian, R., Golzy, N. and Pouratian, N. (2016) Glioblastoma following treatment with fingolimod for relapsing-remitting multiple sclerosis. J. Clin. Neurosci. 30, 166-168. https://doi.org/10.1016/j.jocn.2016.02.003
- Tao, N., Li, K., Liu, J., Fan, G. and Sun, T. (2021) Liproxstatin-1 alleviates bleomycin-induced alveolar epithelial cells injury and mice pulmonary fibrosis via attenuating inflammation, reshaping redox equilibrium, and suppressing ROS/p53/alpha-SMA pathway. Biochem. Biophys. Res. Commun. 551, 133-139. https://doi.org/10.1016/j.bbrc.2021.02.127
- Tesseraud, S., Avril, P., Bonnet, M., Bonnieu, A., Cassar-Malek, I., Chabi, B., Dessauge, F., Gabillard, J. C., Perruchot, M. H. and Seiliez, I. (2021) Autophagy in farm animals: current knowledge and future challenges. Autophagy 17, 1809-1827. https://doi.org/10.1080/15548627.2020.1798064
- Tian, T., Zhang, J., Zhu, X., Wen, S., Shi, D. and Zhou, H. (2017) FTY720 ameliorates renal fibrosis by simultaneously affecting leucocyte recruitment and TGF-β signalling in fibroblasts. Clin. Exp. Immunol. 190, 68-78. https://doi.org/10.1111/cei.13003
- Velagacherla, V., Mehta, C. H., Nayak, Y. and Nayak, U. Y. (2022) Molecular pathways and role of epigenetics in the idiopathic pulmonary fibrosis. Life Sci. 291, 120283.
- Wang, J., Wang, H., Fang, F., Fang, C., Wang, S., Lu, C. and Liu, N. (2021a) Danggui Buxue Tang ameliorates bleomycin-induced pulmonary fibrosis by suppressing the TLR4/NLRP3 signaling pathway in rats. Evid. Based Complement. Alternat. Med. 2021, 8030143.
- Wang, Z., Li, X., Chen, H., Han, L., Ji, X., Wang, Q., Wei, L., Miu, Y., Wang, J., Mao, J. and Zhang, Z. (2021b) Resveratrol alleviates bleomycin-induced pulmonary fibrosis via suppressing HIF-1α and NF-κB expression. Aging 13, 4605-4616. https://doi.org/10.18632/aging.202420
- Wu, L., Mei, L., Chong, L., Huang, Y., Li, Y., Chu, M. and Yang, X. (2016) Olmesartan ameliorates pressure overload-induced cardiac remodeling through inhibition of TAK1/p38 signaling in mice. Life Sci. 145, 121-126. https://doi.org/10.1016/j.lfs.2015.12.034
- Xiang, H., Zhang, J., Lin, C., Zhang, L., Liu, B. and Ouyang, L. (2020) Targeting autophagy-related protein kinases for potential therapeutic purpose. Acta Pharm. Sin. B 10, 569-581. https://doi.org/10.1016/j.apsb.2019.10.003
- Xie, L. and Zeng, Y. (2020) Therapeutic potential of exosomes in pulmonary fibrosis. Front. Pharmacol. 11, 590972.
- Ye, Z. and Hu, Y. (2021) TGFbeta1: gentlemanly orchestrator in idiopathic pulmonary fibrosis (review). Int. J. Mol. Med. 48, 132.
- Yuan, J., Li, P., Pan, H., Xu, Q., Xu, T., Li, Y., Wei, D., Mo, Y., Zhang, Q., Chen, J. and Ni, C. (2021) miR-770-5p inhibits the activation of pulmonary fibroblasts and silica-induced pulmonary fibrosis through targeting TGFBR1. Ecotoxicol. Environ. Saf. 220, 112372.
- Zhang, L., Dong, Y., Wang, Y., Hu, W., Dong, S. and Chen, Y. (2020a) Sphingosine-1-phosphate (S1P) receptors: promising drug targets for treating bone-related diseases. J. Cell. Mol. Med. 24, 4389-4401. https://doi.org/10.1111/jcmm.15155
- Zhang, L., Tong, X., Huang, J., Wu, M., Zhang, S., Wang, D., Liu, S. and Fan, H. (2020b) Fisetin alleviated bleomycin-induced pulmonary fibrosis partly by rescuing alveolar epithelial cells from senescence. Front. Pharmacol. 11, 553690.
- Zhang, X., Mao, Y., Peng, W., Liu, H., Liang, L., Wang, D., Liu, L., Zhou, Y., Zhang, F., Xiao, Y., Shi, M., Shao, S., Wang, Y., Guo, B. and Zhang, X. (2021) Autophagy-related protein EI24 delays the development of pulmonary fibrosis by promoting autophagy. Life Sci. 264, 118664.
- Zhao, H., Wang, Y., Qiu, T., Liu, W. and Yao, P. (2020) Autophagy, an important therapeutic target for pulmonary fibrosis diseases. Clin. Chim. Acta 502, 139-147. https://doi.org/10.1016/j.cca.2019.12.016
- Zhao, J. L., Zhang, T., Shao, X., Zhu, J. J. and Guo, M. Z. (2019) Curcumin ameliorates peritoneal fibrosis via inhibition of transforming growth factor-activated kinase 1 (TAK1) pathway in a rat model of peritoneal dialysis. BMC Complement. Altern. Med. 19, 280.