Acknowledgement
This research was supported by a grant from the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2018R1D1A1B07049500).
References
- Ashford, C. A. (1937) Effects of hydroxymalonate on the metabolism of brain. Biochem. J. 31, 275-281. https://doi.org/10.1042/bj0310275
- Bataller, R. and Brenner, D. (2005) Science in medicine liver fibrosis. J. Clin. Investig. 115, 209-218. https://doi.org/10.1172/JCI24282
- Chen, M., Liu. J., Yang, W. and Ling, W. (2017) Lipopolysaccharide mediates hepatic stellate cell activation by regulating autophagy and retinoic acid signaling. Autophagy 13, 1813-1827. https://doi.org/10.1080/15548627.2017.1356550
- Chen, Y., Choi, S. S., Michelotti, G. A., Chan, I. S., Swiderska-Syn, M., Karaca, G. F., Xie, G., Moylan, C. A., Garibaldi, F., Premont, R., Suliman, H. B., Piantadosi, C. A. and Diehl, A. M. (2012) Hedgehog controls hepatic stellate cell fate by regulating metabolism. Gastroenterology 143, 1319-1329.e11. https://doi.org/10.1053/j.gastro.2012.07.115
- Cortes, E., Lachowski, D., Rice, A., Chronopoulos, A., Robinson, B., Thorpe, S., Lee, D. A., Possamai, L. A., Wang, H., Pinato, D. J. and Del Rio Hernandez, A. E. (2019) Retinoic acid receptor-β is downregulated in hepatocellular carcinoma and cirrhosis and its expression inhibits myosin-driven activation and durotaxis in hepatic stellate cells. Hepatology 69, 785-802. https://doi.org/10.1002/hep.30193
- Derynck, R. and Budi, E. H. (2019) Specificity, versatility, and control of TGF-β family signaling. Sci. Signal. 12, eaav5183.
- Du, K., Hyun, J., Premont, R. T., Choi, S. S., Michelotti, G. A., Swiderska-Syn, M., Dalton, G. D., Thelen, E., Rizi, B. S., Jung, Y. and Diehl, A. M. (2018) Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells. Gastroenterology 154, 1465-1479.e13. https://doi.org/10.1053/j.gastro.2017.12.022
- Dwarkanath, B. S. and Jain, V. K. (1989) Energy linked modifications of the radiation response in a human cerebral glioma cell line. Int. J. Radiat. Oncol. Biol. Phys. 17, 1033-40. https://doi.org/10.1016/0360-3016(89)90152-1
- Higashi, T., Friedman, S. L. and Hoshida, Y. (2017) Hepatic stellate cells as key target in liver fibrosis. Adv. Drug Deliv. Rev. 121, 27-42. https://doi.org/10.1016/j.addr.2017.05.007
- Haaker, M. W., Vaandrager, A. B. and Helms, J. B. (2020) Retinoids in health and disease: a role for hepatic stellate cells in affecting retinoid levels. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865, 158674.
- Holmes, E. G. (1934) The biochemistry of malignant tissue. Ann. Rev. Biochem. 3, 381.
- Hyogo, H., Yamagishi, S., Iwamoto, K., Arihiro, K., Takeuchi, M., Sato, T., Ochi, H., Nonaka, M., Nabeshima, Y., Inoue, M., Ishitobi, T., Chayama, K. and Tazuma, S. (2007) Elevated levels of serum advanced glycation end products in patients with non-alcoholic steatohepatitis. J. Gastroenterol. Hepatol. 22, 1112-1119. https://doi.org/10.1111/j.1440-1746.2007.04943.x
- Huang, J., Wu, L., Tashiro, S., Onodera, S. and Ikejima, T. (2008) Reactive oxygen species mediate oridonin-induced HepG2 apoptosis through p53, MAPK, and mitochondrial signaling pathways. J. Pharmacol. Sci. 107, 370-379. https://doi.org/10.1254/jphs.08044FP
- Jinno, M., Takeuchi, M., Watanabe, A., Teruya, K., Hirohama, J., Eguchi, N. and Miyazaki, A. (2011) Advanced glycation end-products accumulation compromises embryonic development and achievement of pregnancy by assisted reproductive technology. Hum Reprod. 26, 604-610. https://doi.org/10.1093/humrep/deq388
- Kan, H., Yamagishi, S., Ojima, A., Fukami, K., Ueda, S., Takeuchi, M., Hyogo, H., Aikata, H. and Chayama, K. (2015) Elevation of serum levels of advanced glycation end products in patients with non-B or non-C hepatocellular carcinoma. J. Clin. Lab. Anal. 29, 480-484. https://doi.org/10.1002/jcla.21797
- Kapoor, R., Gundpatil, D. B., Somani, B. L., Saha, T. K., Bandyopadhyay, S. and Misra, P. (2014) Anticancer effect of dl-glyceraldehyde and 2-deoxyglucose in ehrlich ascites carcinoma bearing mice and their effect on liver, kidney and haematological parameters. Indian J. Clin. Biochem. 29, 213-220. https://doi.org/10.1007/s12291-013-0343-y
- Kuo, L. M., Chen, P. J., Sung, P. J., Chang, Y. C., Ho, C. T., Wu, Y. H. and Hwang, T. L. (2018) The bioactive extract of pinnigorgia sp. induces apoptosis of hepatic stellate cells via ROS-ERK/JNKcaspase-3 signaling. Mar. Drugs 16, 19.
- Lee, J. H., Samsuzzaman, M., Park, M. G., Park, S. J. and Kim, S. Y. (2021) Methylglyoxal-derived hemoglobin advanced glycation end products induce apoptosis and oxidative stress in human umbilical vein endothelial cells. Int. J. Biol. Macromol. 187, 409-421. https://doi.org/10.1016/j.ijbiomac.2021.07.058
- Loiseau, A. M., Rousseau, G. G. and Hue, L. (1985) Fructose 2,6-bisphosphate and the control of glycolysis by glucocorticoids and by other agents in rat hepatoma cells. Cancer Res. 45, 4263-4269.
- Movassaghi, S., Nadia Sharifi, Z., Mohammadzadeh, F. and Soleimani, M. (2013) Pentoxifylline Protects the rat liver against fibrosis and apoptosis induced by acute administration of 3,4-methylenedioxymethamphetamine (MDMA or ecstasy). Iran. J. Basic Med. Sci. 16, 922-927.
- Needham, J. and Nowinski, W. W. (1937) Intermediary carbohydrate metabolism in embryonic life: general aspects of anaerobic glucolysis. Biochem. J. 31, 1165-1184. https://doi.org/10.1042/bj0311165
- Nokin, M. J., Bellier, J., Durieux, F., Peulen, O., Rademaker, G., Gabriel, M., Monseur, C., Charloteaux, B., Verbeke, L., van Laere, S., Roncarati, P., Herfs, M., Lambert, C., Scheijen, J., Schalkwijk, C., Colige, A., Caers, J., Delvenne, P., Turtoi, A., Castronovo, V. and Bellahcene, A. (2019) Methylglyoxal, a glycolysis metabolite, triggers metastasis through MEK/ERK/SMAD1 pathway activation in breast cancer. Breast Cancer Res. 21, 11.
- Pang, Y., Kartsonaki, C., Guo, Y., Bragg, F., Yang, L., Bian, Z., Chen, Y., Iona, A., Millwood, I. Y., Lv, J., Yu, C., Chen, J., Li, L., Holmes, M. V. and Chen, Z. (2017) Diabetes, plasma glucose and incidence of pancreatic cancer: a prospective study of 0.5 million Chinese adults and a meta-analysis of 22 cohort studies. Int. J. Cancer 140, 1781-1788. https://doi.org/10.1002/ijc.30599
- Puche, J. E., Saiman, Y. and Friedman, S. L. (2013) Hepatic stellate cells and liver fibrosis. Compr. Physiol. 4, 1473-1492.
- Rinella, M. E. (2015) Nonalcoholic fatty liver disease: a systematic review. JAMA 313, 2263-2273. https://doi.org/10.1001/jama.2015.5370
- Sakamoto, A. and Prasad, K. N. (1972) Effect of dl-glyceraldehyde on mouse neuroblastoma cells in culture. Cancer Res. 32, 532-534.
- Saeed, A., Dullaart, R. P. F., Schreuder, T. C. M. A., Blokzijl, H. and Faber, K. N. (2018) Disturbed vitamin A metabolism in non-alcoholic fatty liver disease (NAFLD). Nutrients 10, 29.
- Sakasai-Sakai, A., Takata, T., Takino, J. I. and Takeuchi, M. (2017) Impact of intracellular glyceraldehyde-derived advanced glycation end-products on human hepatocyte cell death. Sci. Rep. 7, 14282.
- Samsuzzaman, M. and Jang, B. C. (2022) Growth-suppressive and apoptosis-inducing effects of tetrandrine in SW872 human malignant liposarcoma cells via activation of caspase-9, down-regulation of XIAP and STAT-3, and ER stress. Biomolecules 12, 843.
- Senoo, T., R., Akazawa, Y., Ichikawa, T., Miuma, S., Miyaaki, H., Taura, N. and Nakao, K. (2018) Geranylgeranylacetone attenuates fibrogenic activity and induces apoptosis in cultured human hepatic stellate cells and reduces liver fibrosis in carbon tetrachloride-treated mice. BMC Gastroenterol. 18, 34.
- Smith-Cortinez, N., van Eunen, K., Heegsma, J., Serna-Salas, S. A., Sydor, S., Bechmann, L. P., Moshage, H., Bakker, B. M. and Faber, K. N. (2020) Simultaneous induction of glycolysis and oxidative phosphorylation during activation of hepatic stellate cells reveals novel mitochondrial targets to treat liver fibrosis. Cells 9, 2456.
- Wang, Y. R., Hong, R. T., Xie, Y. Y. and Xu, J. M. (2018) Melatonin ameliorates liver fibrosis induced by carbon tetrachloride in rats via inhibiting TGF-β1/Smad signaling pathway. Curr. Med. Sci. 38, 236-244. https://doi.org/10.1007/s11596-018-1871-8
- Woodward, G. E. and Hudson, M. T. (1954) The effect of 2-deoxyD-glucose on glycolysis and respiration of tumor and normal tissues. Cancer Res. 14, 599-605. 10.
- Wree, A., Broderick, L., Canbay, A., Hoffman, H. M. and Feldstein, A. E. (2013) From NAFLD to NASH to cirrhosis-new insights into disease mechanisms. Nat. Rev. Gastroenterol. Hepatol. 10, 627-636. https://doi.org/10.1038/nrgastro.2013.149
- Yu, F., Ji, S., Su, L., Wan, L., Zhang, S., Dai, C., Wang, Y., Fu, J. and Zhang, Q. (2015) Adipose-derived mesenchymal stem cells inhibit activation of hepatic stellate cells in vitro and ameliorate rat liver fibrosis in vivo. J. Formos. Med. Assoc. 114, 130-138. https://doi.org/10.1016/j.jfma.2012.12.002