DOI QR코드

DOI QR Code

Anti-Fibrotic Effects of DL-Glyceraldehyde in Hepatic Stellate Cells via Activation of ERK-JNK-Caspase-3 Signaling Axis

  • Md. Samsuzzaman (College of Pharmacy, Gachon University) ;
  • Sun Yeou Kim (College of Pharmacy, Gachon University)
  • Received : 2022.10.12
  • Accepted : 2023.01.31
  • Published : 2023.07.01

Abstract

During liver injury, hepatic stellate cells can differentiate into myofibroblast-like structures, which are more susceptible to proliferation, migration, and extracellular matrix generation, leading to liver fibrosis. Anaerobic glycolysis is associated with activated stellate cells and glyceraldehyde (GA) is an inhibitor of glucose metabolism. Therefore, this study aimed to investigate the anti-fibrotic effects of GA in human stellate LX-2 cells. In this study, we used cell viability, morphological analysis, fluorescence-activated cell sorting (FACS), western blotting, and qRT-PCR techniques to elucidate the molecular mechanism underlying the anti-fibrotic effects of GA in LX-2 cells. The results showed that GA significantly reduced cell density and inhibited cell proliferation and lactate levels in LX-2 cells but not in Hep-G2 cells. We found that GA prominently increased the activation of caspase-3/9 for apoptosis induction, and a pan-caspase inhibitor, Z-VAD-fmk, attenuated the cell death and apoptosis effects of GA, suggesting caspase-dependent cell death. Moreover, GA strongly elevated reactive oxygen species (ROS) production and notably increased the phosphorylation of ERK and JNK. Interestingly, it dramatically reduced α-SMA and collagen type I protein and mRNA expression levels in LX-2 cells. Thus, inhibition of ERK and JNK activation significantly rescued GA-induced cell growth suppression and apoptosis in LX-2 cells. Collectively, the current study provides important information demonstrating the anti-fibrotic effects of GA, a glycolytic metabolite, and demonstrates the therapeutic potency of metabolic factors in liver fibrosis.

Keywords

Acknowledgement

This research was supported by a grant from the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2018R1D1A1B07049500).

References

  1. Ashford, C. A. (1937) Effects of hydroxymalonate on the metabolism of brain. Biochem. J. 31, 275-281. https://doi.org/10.1042/bj0310275
  2. Bataller, R. and Brenner, D. (2005) Science in medicine liver fibrosis. J. Clin. Investig. 115, 209-218. https://doi.org/10.1172/JCI24282
  3. Chen, M., Liu. J., Yang, W. and Ling, W. (2017) Lipopolysaccharide mediates hepatic stellate cell activation by regulating autophagy and retinoic acid signaling. Autophagy 13, 1813-1827. https://doi.org/10.1080/15548627.2017.1356550
  4. Chen, Y., Choi, S. S., Michelotti, G. A., Chan, I. S., Swiderska-Syn, M., Karaca, G. F., Xie, G., Moylan, C. A., Garibaldi, F., Premont, R., Suliman, H. B., Piantadosi, C. A. and Diehl, A. M. (2012) Hedgehog controls hepatic stellate cell fate by regulating metabolism. Gastroenterology 143, 1319-1329.e11. https://doi.org/10.1053/j.gastro.2012.07.115
  5. Cortes, E., Lachowski, D., Rice, A., Chronopoulos, A., Robinson, B., Thorpe, S., Lee, D. A., Possamai, L. A., Wang, H., Pinato, D. J. and Del Rio Hernandez, A. E. (2019) Retinoic acid receptor-β is downregulated in hepatocellular carcinoma and cirrhosis and its expression inhibits myosin-driven activation and durotaxis in hepatic stellate cells. Hepatology 69, 785-802. https://doi.org/10.1002/hep.30193
  6. Derynck, R. and Budi, E. H. (2019) Specificity, versatility, and control of TGF-β family signaling. Sci. Signal. 12, eaav5183.
  7. Du, K., Hyun, J., Premont, R. T., Choi, S. S., Michelotti, G. A., Swiderska-Syn, M., Dalton, G. D., Thelen, E., Rizi, B. S., Jung, Y. and Diehl, A. M. (2018) Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells. Gastroenterology 154, 1465-1479.e13. https://doi.org/10.1053/j.gastro.2017.12.022
  8. Dwarkanath, B. S. and Jain, V. K. (1989) Energy linked modifications of the radiation response in a human cerebral glioma cell line. Int. J. Radiat. Oncol. Biol. Phys. 17, 1033-40. https://doi.org/10.1016/0360-3016(89)90152-1
  9. Higashi, T., Friedman, S. L. and Hoshida, Y. (2017) Hepatic stellate cells as key target in liver fibrosis. Adv. Drug Deliv. Rev. 121, 27-42. https://doi.org/10.1016/j.addr.2017.05.007
  10. Haaker, M. W., Vaandrager, A. B. and Helms, J. B. (2020) Retinoids in health and disease: a role for hepatic stellate cells in affecting retinoid levels. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865, 158674.
  11. Holmes, E. G. (1934) The biochemistry of malignant tissue. Ann. Rev. Biochem. 3, 381.
  12. Hyogo, H., Yamagishi, S., Iwamoto, K., Arihiro, K., Takeuchi, M., Sato, T., Ochi, H., Nonaka, M., Nabeshima, Y., Inoue, M., Ishitobi, T., Chayama, K. and Tazuma, S. (2007) Elevated levels of serum advanced glycation end products in patients with non-alcoholic steatohepatitis. J. Gastroenterol. Hepatol. 22, 1112-1119. https://doi.org/10.1111/j.1440-1746.2007.04943.x
  13. Huang, J., Wu, L., Tashiro, S., Onodera, S. and Ikejima, T. (2008) Reactive oxygen species mediate oridonin-induced HepG2 apoptosis through p53, MAPK, and mitochondrial signaling pathways. J. Pharmacol. Sci. 107, 370-379. https://doi.org/10.1254/jphs.08044FP
  14. Jinno, M., Takeuchi, M., Watanabe, A., Teruya, K., Hirohama, J., Eguchi, N. and Miyazaki, A. (2011) Advanced glycation end-products accumulation compromises embryonic development and achievement of pregnancy by assisted reproductive technology. Hum Reprod. 26, 604-610. https://doi.org/10.1093/humrep/deq388
  15. Kan, H., Yamagishi, S., Ojima, A., Fukami, K., Ueda, S., Takeuchi, M., Hyogo, H., Aikata, H. and Chayama, K. (2015) Elevation of serum levels of advanced glycation end products in patients with non-B or non-C hepatocellular carcinoma. J. Clin. Lab. Anal. 29, 480-484. https://doi.org/10.1002/jcla.21797
  16. Kapoor, R., Gundpatil, D. B., Somani, B. L., Saha, T. K., Bandyopadhyay, S. and Misra, P. (2014) Anticancer effect of dl-glyceraldehyde and 2-deoxyglucose in ehrlich ascites carcinoma bearing mice and their effect on liver, kidney and haematological parameters. Indian J. Clin. Biochem. 29, 213-220. https://doi.org/10.1007/s12291-013-0343-y
  17. Kuo, L. M., Chen, P. J., Sung, P. J., Chang, Y. C., Ho, C. T., Wu, Y. H. and Hwang, T. L. (2018) The bioactive extract of pinnigorgia sp. induces apoptosis of hepatic stellate cells via ROS-ERK/JNKcaspase-3 signaling. Mar. Drugs 16, 19.
  18. Lee, J. H., Samsuzzaman, M., Park, M. G., Park, S. J. and Kim, S. Y. (2021) Methylglyoxal-derived hemoglobin advanced glycation end products induce apoptosis and oxidative stress in human umbilical vein endothelial cells. Int. J. Biol. Macromol. 187, 409-421. https://doi.org/10.1016/j.ijbiomac.2021.07.058
  19. Loiseau, A. M., Rousseau, G. G. and Hue, L. (1985) Fructose 2,6-bisphosphate and the control of glycolysis by glucocorticoids and by other agents in rat hepatoma cells. Cancer Res. 45, 4263-4269.
  20. Movassaghi, S., Nadia Sharifi, Z., Mohammadzadeh, F. and Soleimani, M. (2013) Pentoxifylline Protects the rat liver against fibrosis and apoptosis induced by acute administration of 3,4-methylenedioxymethamphetamine (MDMA or ecstasy). Iran. J. Basic Med. Sci. 16, 922-927.
  21. Needham, J. and Nowinski, W. W. (1937) Intermediary carbohydrate metabolism in embryonic life: general aspects of anaerobic glucolysis. Biochem. J. 31, 1165-1184. https://doi.org/10.1042/bj0311165
  22. Nokin, M. J., Bellier, J., Durieux, F., Peulen, O., Rademaker, G., Gabriel, M., Monseur, C., Charloteaux, B., Verbeke, L., van Laere, S., Roncarati, P., Herfs, M., Lambert, C., Scheijen, J., Schalkwijk, C., Colige, A., Caers, J., Delvenne, P., Turtoi, A., Castronovo, V. and Bellahcene, A. (2019) Methylglyoxal, a glycolysis metabolite, triggers metastasis through MEK/ERK/SMAD1 pathway activation in breast cancer. Breast Cancer Res. 21, 11.
  23. Pang, Y., Kartsonaki, C., Guo, Y., Bragg, F., Yang, L., Bian, Z., Chen, Y., Iona, A., Millwood, I. Y., Lv, J., Yu, C., Chen, J., Li, L., Holmes, M. V. and Chen, Z. (2017) Diabetes, plasma glucose and incidence of pancreatic cancer: a prospective study of 0.5 million Chinese adults and a meta-analysis of 22 cohort studies. Int. J. Cancer 140, 1781-1788. https://doi.org/10.1002/ijc.30599
  24. Puche, J. E., Saiman, Y. and Friedman, S. L. (2013) Hepatic stellate cells and liver fibrosis. Compr. Physiol. 4, 1473-1492.
  25. Rinella, M. E. (2015) Nonalcoholic fatty liver disease: a systematic review. JAMA 313, 2263-2273. https://doi.org/10.1001/jama.2015.5370
  26. Sakamoto, A. and Prasad, K. N. (1972) Effect of dl-glyceraldehyde on mouse neuroblastoma cells in culture. Cancer Res. 32, 532-534.
  27. Saeed, A., Dullaart, R. P. F., Schreuder, T. C. M. A., Blokzijl, H. and Faber, K. N. (2018) Disturbed vitamin A metabolism in non-alcoholic fatty liver disease (NAFLD). Nutrients 10, 29.
  28. Sakasai-Sakai, A., Takata, T., Takino, J. I. and Takeuchi, M. (2017) Impact of intracellular glyceraldehyde-derived advanced glycation end-products on human hepatocyte cell death. Sci. Rep. 7, 14282.
  29. Samsuzzaman, M. and Jang, B. C. (2022) Growth-suppressive and apoptosis-inducing effects of tetrandrine in SW872 human malignant liposarcoma cells via activation of caspase-9, down-regulation of XIAP and STAT-3, and ER stress. Biomolecules 12, 843.
  30. Senoo, T., R., Akazawa, Y., Ichikawa, T., Miuma, S., Miyaaki, H., Taura, N. and Nakao, K. (2018) Geranylgeranylacetone attenuates fibrogenic activity and induces apoptosis in cultured human hepatic stellate cells and reduces liver fibrosis in carbon tetrachloride-treated mice. BMC Gastroenterol. 18, 34.
  31. Smith-Cortinez, N., van Eunen, K., Heegsma, J., Serna-Salas, S. A., Sydor, S., Bechmann, L. P., Moshage, H., Bakker, B. M. and Faber, K. N. (2020) Simultaneous induction of glycolysis and oxidative phosphorylation during activation of hepatic stellate cells reveals novel mitochondrial targets to treat liver fibrosis. Cells 9, 2456.
  32. Wang, Y. R., Hong, R. T., Xie, Y. Y. and Xu, J. M. (2018) Melatonin ameliorates liver fibrosis induced by carbon tetrachloride in rats via inhibiting TGF-β1/Smad signaling pathway. Curr. Med. Sci. 38, 236-244. https://doi.org/10.1007/s11596-018-1871-8
  33. Woodward, G. E. and Hudson, M. T. (1954) The effect of 2-deoxyD-glucose on glycolysis and respiration of tumor and normal tissues. Cancer Res. 14, 599-605. 10.
  34. Wree, A., Broderick, L., Canbay, A., Hoffman, H. M. and Feldstein, A. E. (2013) From NAFLD to NASH to cirrhosis-new insights into disease mechanisms. Nat. Rev. Gastroenterol. Hepatol. 10, 627-636. https://doi.org/10.1038/nrgastro.2013.149
  35. Yu, F., Ji, S., Su, L., Wan, L., Zhang, S., Dai, C., Wang, Y., Fu, J. and Zhang, Q. (2015) Adipose-derived mesenchymal stem cells inhibit activation of hepatic stellate cells in vitro and ameliorate rat liver fibrosis in vivo. J. Formos. Med. Assoc. 114, 130-138. https://doi.org/10.1016/j.jfma.2012.12.002