Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (NRF-2016R1A6A1A03011325; NRF-2022R1A2C1012031).
References
- Ares-Santos, S., Granado, N. and Moratalla, R. (2013) The role of dopamine receptors in the neurotoxicity of methamphetamine. J. Intern. Med. 273, 437-453. https://doi.org/10.1111/joim.12049
- Aydin, E., Turkez, H. and Geyikoglu, F. (2013) Antioxidative, anticancer and genotoxic properties of α-pinene on N2a neuroblastoma cells. Biologia 68, 1004-1009. https://doi.org/10.2478/s11756-013-0230-2
- Chen, Z. X. and Pervaiz, S. (2009) BCL-2: pro-or anti-oxidant? Front. Biosci. Elite Ed. 1, 263-268.
- Chomchai, C. and Chomchai, S. (2015) Global patterns of methamphetamine use. Curr. Opin. Psychiatry 28, 269-274. https://doi.org/10.1097/YCO.0000000000000168
- Gibb, J. and Kogan, F. (1979) Influence of dopamine synthesis on methamphetamine-induced changes in striatal and adrenal tyrosine hydroxylase activity. Naunyn Schmiedebergs Arch. Pharmacol. 310, 185-187. https://doi.org/10.1007/BF00500283
- Jayanthi, S., Daiwile, A. P. and Cadet, J. L. (2021) Neurotoxicity of methamphetamine: Main effects and mechanisms. Exp. Neurol. 344, 113795.
- Jayanthi, S., Deng, X., Bordelon, M., Mccoy, M. T. and Cadet, J. L. (2001) Methamphetamine causes differential regulation of prodeath and anti-death Bcl-2 genes in the mouse neocortex. FASEB J. 15, 1745-1752. https://doi.org/10.1096/fj.01-0025com
- Jayanthi, S., Deng, X., H. Noailles, P. A., Ladenheim, B. and Lud Cadet, J. (2004) Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondria-dependent death cascades. FASEB J. 18, 238-251. https://doi.org/10.1096/fj.03-0295com
- Juan, C. A., Perez De La Lastra, J. M., Plou, F. J. and Perez-Lebena, E. (2021) The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int. J. Mol. Sci. 22, 4642.
- Jumnongprakhon, P., Govitrapong, P., Tocharus, C., Pinkaew, D. and Tocharus, J. (2015) Melatonin protects methamphetamine-induced neuroinflammation through NF-κB and Nrf2 pathways in glioma cell line. Neurochem. Res. 40, 1448-1456. https://doi.org/10.1007/s11064-015-1613-2
- Kim, B., Yun, J. and Park, B. (2020) Methamphetamine-induced neuronal damage: neurotoxicity and neuroinflammation. Biomol. Ther. (Seoul) 28, 381-388. https://doi.org/10.4062/biomolther.2020.044
- Kim, D.-S., Lee, H.-J., Jeon, Y.-D., Han, Y.-H., Kee, J.-Y., Kim, H.-J., Shin, H.-J., Kang, J., Lee, B. S., Kim, S.-H., Kim, S.-J., Park, S.-H., Choi, B.-M., Park, S.-J., Um, J.-Y. and Hong, S.-H. (2015) Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. Am. J. Chin. Med. 43, 731-742. https://doi.org/10.1142/S0192415X15500457
- Kitamura, O., Takeichi, T., Wang, E. L., Tokunaga, I., Ishigami, A. and Kubo, S.-I. (2010) Microglial and astrocytic changes in the striatum of methamphetamine abusers. Leg. Med. 12, 57-62. https://doi.org/10.1016/j.legalmed.2009.11.001
- Lavoie, M. J., Card, J. P. and Hastings, T. G. (2004) Microglial activation precedes dopamine terminal pathology in methamphetamineinduced neurotoxicity. Exp. Neurol. 187, 47-57. https://doi.org/10.1016/j.expneurol.2004.01.010
- Loftis, J. M. and Janowsky, A. (2014) Neuroimmune basis of methamphetamine toxicity. Int. Rev. Neurobiol. 118, 165-197. https://doi.org/10.1016/B978-0-12-801284-0.00007-5
- Maragos, W. F., Jakel, R., Chesnut, D., Pocernich, C. B., Butterfield, D. A., St Clair, D. and Cass, W. A. (2000) Methamphetamine toxicity is attenuated in mice that overexpress human manganese superoxide dismutase. Brain Res. 878, 218-222. https://doi.org/10.1016/S0006-8993(00)02707-4
- Menezes, I. A., Barreto, C. M., Antoniolli, A. R., Santos, M. R. and De Sousa, D. P. (2010) Hypotensive activity of terpenes found in essential oils. Z. Naturforsch. C, J. Biosci. 65, 562-566. https://doi.org/10.1515/znc-2010-9-1005
- Nguyen, P.-T., Dang, D.-K., Tran, H.-Q., Shin, E.-J., Jeong, J. H., Nah, S.-Y., Cho, M. C., Lee, Y. S., Jang, C.-G. and Kim, H.-C. (2019) Methiopropamine, a methamphetamine analogue, produces neurotoxicity via dopamine receptors. Chem. Biol. Interact. 305, 134-147. https://doi.org/10.1016/j.cbi.2019.03.017
- Raisova, M., Hossini, A. M., Eberle, J., Riebeling, C., Orfanos, C. E., Geilen, C. C., Wieder, T., Sturm, I. and Daniel, P. T. (2001) The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J. Invest. Dermatol. 117, 333-340. https://doi.org/10.1046/j.0022-202x.2001.01409.x
- Riddle, E. L., Fleckenstein, A. E. and Hanson, G. R. (2006) Mechanisms of methamphetamine-induced dopaminergic neurotoxicity. AAPS J. 8, E413-E418. https://doi.org/10.1007/BF02854914
- Rivera-Yanez, C. R., Terrazas, L. I., Jimenez-Estrada, M., Campos, J. E., Flores-Ortiz, C. M., Hernandez, L. B., Cruz-Sanchez, T., Garrido-Farina, G. I., Rodriguez-Monroy, M. A. and Canales-Martinez, M. M. (2017) Anti-Candida activity of Bursera morelensis Ramirez essential oil and two compounds, α-pinene and γ-terpinene-an in vitro study. Molecules 22, 2095.
- Satou, T., Kasuya, H., Maeda, K. and Koike, K. (2014) Daily inhalation of α-pinene in mice: effects on behavior and organ accumulation. Phytother. Res. 28, 1284-1287. https://doi.org/10.1002/ptr.5105
- Shin, E.-J., Shin, S. W., Nguyen, T.-T. L., Park, D. H., Wie, M.-B., Jang, C.-G., Nah, S.-Y., Yang, B. W., Ko, S. K., Nabeshima, T. and Kim, H. C. (2014) Ginsenoside Re rescues methamphetamine-induced oxidative damage, mitochondrial dysfunction, microglial activation, and dopaminergic degeneration by inhibiting the protein kinase Cδ gene. Mol. Neurobiol. 49, 1400-1421. https://doi.org/10.1007/s12035-013-8617-1
- Thomas, D. M., Walker, P. D., Benjamins, J. A., Geddes, T. J. and Kuhn, D. M. (2004) Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. J. Pharmacol. Exp. Ther. 311, 1-7. https://doi.org/10.1124/jpet.104.070961
- Tulloch, I., Afanador, L., Mexhitaj, I., Ghazaryan, N., Garzagongora, A. G. and Angulo, J. A. (2011) A single high dose of methamphetamine induces apoptotic and necrotic striatal cell loss lasting up to 3 months in mice. Neuroscience 193, 162-169. https://doi.org/10.1016/j.neuroscience.2011.07.020
- Veerasakul, S., Thanoi, S., Watiktinkorn, P., Reynolds, G. P. and Nudmamud-Thanoi, S. (2016) Does elevated peripheral benzodiazepine receptor gene expression relate to cognitive deficits in methamphetamine dependence? Hum. Psychopharmacol. 31, 243-246. https://doi.org/10.1002/hup.2523
- Volkow, N. D., Chang, L., Wang, G.-J., Fowler, J. S., Ding, Y.-S., Sedler, M., Logan, J., Franceschi, D., Gatley, J., Hitzemann, R., Gifford, A., Wong, C. and Pappas, N. (2001a) Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am. J. Psychiatry 158, 2015-2021. https://doi.org/10.1176/appi.ajp.158.12.2015
- Volkow, N. D., Chang, L., Wang, G.-J., Fowler, J. S., Leonido-Yee, M., Franceschi, D., Sedler, M. J., Gatley, S. J., Hitzemann, R., Ding, Y.-S., Logan, J., Wong, C. and Miller, E. N. (2001b) Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am. J. Psychiatry 158, 377-382. https://doi.org/10.1176/appi.ajp.158.3.377
- Volz, T. J., Fleckenstein, A. E. and Hanson, G. R. (2007a) Methamphetamine-induced alterations in monoamine transport: implications for neurotoxicity, neuroprotection and treatment. Addiction 102, 44-48. https://doi.org/10.1111/j.1360-0443.2007.01771.x
- Volz, T. J., Hanson, G. R. and Fleckenstein, A. E. (2007b) The role of the plasmalemmal dopamine and vesicular monoamine transporters in methamphetamine-induced dopaminergic deficits. J. Neurochem. 101, 883-888. https://doi.org/10.1111/j.1471-4159.2006.04419.x
- Yang, H., Woo, J., Pae, A. N., Um, M. Y., Cho, N.-C., Park, K. D., Yoon, M., Kim, J., Lee, C. J. and Cho, S. (2016) α-Pinene, a major constituent of pine tree oils, enhances non-rapid eye movement sleep in mice through GABAA-benzodiazepine receptors. Mol. Pharmacol. 90, 530-539. https://doi.org/10.1124/mol.116.105080
- Yang, X., Wang, Y., Li, Q., Zhong, Y., Chen, L., Du, Y., He, J., Liao, L., Xiong, K., Yi, C.-X. and Yan, J. (2018) The main molecular mechanisms underlying methamphetamine-induced neurotoxicity and implications for pharmacological treatment. Front. Mol. Neurosci. 11, 186.
- Younus, H. (2018) Therapeutic potentials of superoxide dismutase. Int. J. Health Sci. (Qassim) 12, 88-93.