DOI QR코드

DOI QR Code

5-Hydroxytryptophan Reduces Levodopa-Induced Dyskinesia via Regulating AKT/mTOR/S6K and CREB/ΔFosB Signals in a Mouse Model of Parkinson's Disease

  • Yujin Choi (Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Eugene Huh (Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Seungmin Lee (Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Jin Hee Kim (Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Myoung Gyu Park (MetaCen therapeutics Inc. R&D Center) ;
  • Seung-Yong Seo (College of Pharmacy, Gachon University) ;
  • Sun Yeou Kim (College of Pharmacy, Gachon University) ;
  • Myung Sook Oh (Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University)
  • Received : 2022.11.08
  • Accepted : 2023.02.10
  • Published : 2023.07.01

Abstract

Long-term administration of levodopa (L-DOPA) to patients with Parkinson's disease (PD) commonly results in involuntary dyskinetic movements, as is known for L-DOPA-induced dyskinesia (LID). 5-Hydroxytryptophan (5-HTP) has recently been shown to alleviate LID; however, no biochemical alterations to aberrant excitatory conditions have been revealed yet. In the present study, we aimed to confirm its anti-dyskinetic effect and to discover the unknown molecular mechanisms of action of 5-HTP in LID. We made an LID-induced mouse model through chronic L-DOPA treatment to 6-hydroxydopamine-induced hemi-parkinsonian mice and then administered 5-HTP 60 mg/kg for 15 days orally to LID-induced mice. In addition, we performed behavioral tests and analyzed the histological alterations in the lesioned part of the striatum (ST). Our results showed that 5-HTP significantly suppressed all types of dyskinetic movements (axial, limb, orolingual and locomotive) and its effects were similar to those of amantadine, the only approved drug by Food and Drug Administration. Moreover, 5-HTP did not affect the efficacy of L-DOPA on PD motor manifestations. From a molecular perspective, 5-HTP treatment significantly decreased phosphorylated CREB and ΔFosB expression, commonly known as downstream factors, increased in LID conditions. Furthermore, we found that the effects of 5-HTP were not mediated by dopamine1 receptor (D1)/DARPP32/ERK signaling, but regulated by AKT/mTOR/S6K signaling, which showed different mechanisms with amantadine in the denervated ST. Taken together, 5-HTP alleviates LID by regulating the hyperactivated striatal AKT/mTOR/S6K and CREB/ΔFosB signaling.

Keywords

References

  1. Alberini, C. M. (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol. Rev. 89, 121-145. https://doi.org/10.1152/physrev.00017.2008
  2. Albert, P. R., Lembo, P., Storring, J. M., Charest, A. and Saucier, C. (1996) The 5-HT1A receptor: signaling, desensitization, and gene transcription. Neuropsychopharmacology 14, 19-25. https://doi.org/10.1016/S0893-133X(96)80055-8
  3. Antion, M. D., Merhav, M., Hoeffer, C. A., Reis, G., Kozma, S. C., Thomas, G., Schuman, E. M., Rosenblum, K. and Klann, E. (2008) Removal of S6K1 and S6K2 leads to divergent alterations in learning, memory, and synaptic plasticity. Learn. Mem. 15, 29-38. https://doi.org/10.1101/lm.661908
  4. Aubert, I., Guigoni, C., Hakansson, K., Li, Q., Dovero, S., Barthe, N., Bioulac, B. H., Gross, C. E., Fisone, G., Bloch, B. and Bezard, E. (2005) Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann. Neurol. 57, 17-26. https://doi.org/10.1002/ana.20296
  5. Azkona, G., Sagarduy, A., Aristieta, A., Vazquez, N., Zubillaga, V., Ruiz-Ortega, J. A., Perez-Navarro, E., Ugedo, L. and Sanchez-Pernaute, R. (2014) Buspirone anti-dyskinetic effect is correlated with temporal normalization of dysregulated striatal DRD1 signalling in L-DOPA-treated rats. Neuropharmacology 79, 726-737. https://doi.org/10.1016/j.neuropharm.2013.11.024
  6. Ballou, Y., Rivas, A., Belmont, A., Patel, L., Amaya, C. N., Lipson, S., Khayou, T., Dickerson, E. B., Nahleh, Z. and Bryan, B. A. (2018) 5-HT serotonin receptors modulate mitogenic signaling and impact tumor cell viability. Mol. Clin. Oncol. 9, 243-254.
  7. Beck, G., Singh, A., Zhang, J., Potts, L. F., Woo, J. M., Park, E. S., Mochizuki, H., Mouradian, M. M. and Papa, S. M. (2019) Role of striatal deltaFosB in l-Dopa-induced dyskinesias of parkinsonian nonhuman primates. Proc. Natl. Acad. Sci. U. S. A. 116, 18664-18672. https://doi.org/10.1073/pnas.1907810116
  8. Blanpied, T. A., Clarke, R. J. and Johnson, J. W. (2005) Amantadine inhibits NMDA receptors by accelerating channel closure during channel block. J. Neurosci. 25, 3312-3322. https://doi.org/10.1523/JNEUROSCI.4262-04.2005
  9. Brugnoli, A., Napolitano, F., Usiello, A. and Morari, M. (2016) Genetic deletion of Rhes or pharmacological blockade of mTORC1 prevent striato-nigral neurons activation in levodopa-induced dyskinesia. Neurobiol. Dis. 85, 155-163. https://doi.org/10.1016/j.nbd.2015.10.020
  10. Calabrese, V., Di Maio, A., Marino, G., Cardinale, A., Natale, G., De Rosa, A., Campanelli, F., Mancini, M., Napolitano, F., Avallone, L., Calabresi, P., Usiello, A., Ghiglieri, V. and Picconi, B. (2020) Rapamycin, by inhibiting mTORC1 signaling, prevents the loss of striatal bidirectional synaptic plasticity in a rat model of L-DOPA-induced dyskinesia. Front. Aging Neurosci. 12, 230.
  11. Calabresi, P., Di Filippo, M., Ghiglieri, V. and Picconi, B. (2008) Molecular mechanisms underlying levodopa-induced dyskinesia. Mov. Disord. 23 Suppl 3, S570- S579. https://doi.org/10.1002/mds.22019
  12. Carta, M., Carlsson, T., Kirik, D. and Bjorklund, A. (2007) Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain 130, 1819-1833. https://doi.org/10.1093/brain/awm082
  13. Carta, M., Carlsson, T., Munoz, A., Kirik, D. and Bjorklund, A. (2008) Serotonin-dopamine interaction in the induction and maintenance of L-DOPA-induced dyskinesias. Prog. Brain Res. 172, 465-478. https://doi.org/10.1016/S0079-6123(08)00922-9
  14. Cenci, M. A. (2014) Presynaptic mechanisms of l-DOPA-induced dyskinesia: the findings, the debate, and the therapeutic implications. Front. Neurol. 5, 242.
  15. Chaki, S. and Fukumoto, K. (2019) Role of serotonergic system in the antidepressant actions of mGlu2/3 receptor antagonists: similarity to ketamine. Int. J. Mol. Sci. 20, 1270.
  16. Chilmonczyk, Z., Bojarski, A. J., Pilc, A. and Sylte, I. (2017) Serotonin transporter and receptor ligands with antidepressant activity as neuroprotective and proapoptotic agents. Pharmacol. Rep. 69, 469-478. https://doi.org/10.1016/j.pharep.2017.01.011
  17. Eo, H., Kwon, Y., Huh, E., Sim, Y., Choi, J. G., Jeong, J. S., Du, X. F., Soh, H. Y., Hong, S. P., Kim Pak, Y. and Oh, M. S. (2019) Protective effects of DA-9805 on dopaminergic neurons against 6-hydroxydopamine-induced neurotoxicity in the models of Parkinson's disease. Biomed. Pharmacother. 117, 109184.
  18. Eshraghi, M., Ramirez-Jarquin, U. N., Shahani, N., Nuzzo, T., De Rosa, A., Swarnkar, S., Galli, N., Rivera, O., Tsaprailis, G., ScharagerTapia, C., Crynen, G., Li, Q., Thiolat, M. L., Bezard, E., Usiello, A. and Subramaniam, S. (2020) RasGRP1 is a causal factor in the development of l-DOPA-induced dyskinesia in Parkinson's disease. Sci. Adv. 6, eaaz7001.
  19. Feyder, M., Bonito-Oliva, A. and Fisone, G. (2011) L-DOPA-induced dyskinesia and abnormal signaling in striatal medium spiny neurons: focus on dopamine D1 receptor-mediated transmission. Front. Behav. Neurosci. 5, 71.
  20. Ghiglieri, V., Mineo, D., Vannelli, A., Cacace, F., Mancini, M., Pendolino, V., Napolitano, F., di Maio, A., Mellone, M., Stanic, J., Tronci, E., Fidalgo, C., Stancampiano, R., Carta, M., Calabresi, P., Gardoni, F., Usiello, A. and Picconi, B. (2016) Modulation of serotonergic transmission by eltoprazine in L-DOPA-induced dyskinesia: Behavioral, molecular, and synaptic mechanisms. Neurobiol. Dis. 86, 140-153. https://doi.org/10.1016/j.nbd.2015.11.022
  21. Hamadjida, A., Nuara, S. G., Bedard, D., Gaudette, F., Beaudry, F., Gourdon, J. C. and Huot, P. (2018) The highly selective 5-HT2A antagonist EMD-281,014 reduces dyskinesia and psychosis in the l-DOPA-treated parkinsonian marmoset. Neuropharmacology 139, 61-67. https://doi.org/10.1016/j.neuropharm.2018.06.038
  22. Huh, E., Choi, J. G., Sim, Y. and Oh, M. S. (2018) An integrative approach to treat Parkinson's disease: ukgansan complements L-dopa by ameliorating dopaminergic neuronal damage and L-dopainduced dyskinesia in mice. Front. Aging Neurosci. 10, 431.
  23. Ibarra-Lecue, I., Mollinedo-Gajate, I., Meana, J. J., Callado, L. F., DiezAlarcia, R. and Uriguen, L. (2018) Chronic cannabis promotes pro-hallucinogenic signaling of 5-HT2A receptors through Akt/mTOR pathway. Neuropsychopharmacology 43, 2028-2035. https://doi.org/10.1038/s41386-018-0076-y
  24. Inzelberg, R., Bonuccelli, U., Schechtman, E., Miniowich, A., Strugatsky, R., Ceravolo, R., Logi, C., Rossi, C., Klein, C. and Rabey, J. M. (2006) Association between amantadine and the onset of dementia in Parkinson's disease. Mov. Disord. 21, 1375-1379. https://doi.org/10.1002/mds.20968
  25. Junho, B. T. and de Oliveira, V. F. (2019) The role of NMDA receptor antagonists, amantadine and memantine, in schizophrenia treatment: a systematic review. Arch. Psychiatry Psychother. 46, 165-168. https://doi.org/10.1590/0101-60830000000218
  26. Kannari, K., Yamato, H., Shen, H., Tomiyama, M., Suda, T. and Matsunaga, M. (2001) Activation of 5-HT(1A) but not 5-HT(1B) receptors attenuates an increase in extracellular dopamine derived from exogenously administered L-DOPA in the striatum with nigrostriatal denervation. J. Neurochem. 76, 1346-1353. https://doi.org/10.1046/j.1471-4159.2001.00184.x
  27. Magnuson, B., Ekim, B. and Fingar, D. C. (2012) Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem. J. 441, 1-21. https://doi.org/10.1042/BJ20110892
  28. Marxreiter, F., Winkler, J., Uhl, M. and Madzar, D. (2017) A case report of severe delirium after amantadine withdrawal. Case Rep. Neurol. 9, 44-48. https://doi.org/10.1159/000460814
  29. Meffre, J., Chaumont-Dubel, S., Mannoury la Cour, C., Loiseau, F., Watson, D. J., Dekeyne, A., Seveno, M., Rivet, J. M., Gaven, F., Deleris, P., Herve, D., Fone, K. C., Bockaert, J., Millan, M. J. and Marin, P. (2012) 5-HT(6) receptor recruitment of mTOR as a mechanism for perturbed cognition in schizophrenia. EMBO Mol. Med. 4, 1043-1056. https://doi.org/10.1002/emmm.201201410
  30. Meloni, M., Puligheddu, M., Sanna, F., Cannas, A., Farris, R., Tronci, E., Figorilli, M., Defazio, G. and Carta, M. (2020) Efficacy and safety of 5-Hydroxytryptophan on levodopa-induced motor complications in Parkinson's disease: a preliminary finding. J. Neurol. Sci. 415, 116869.
  31. Murray, J. L., McDonald, N. J., Sheng, J., Shaw, M. W., Hodge, T. W., Rubin, D. H., O'Brien, W. A. and Smee, D. F. (2012) Inhibition of influenza A virus replication by antagonism of a PI3K-AKT-mTOR pathway member identified by gene-trap insertional mutagenesis. Antivir. Chem. Chemother. 22, 205-215. https://doi.org/10.3851/IMP2080
  32. Nakatani, Y., Sato-Suzuki, I., Tsujino, N., Nakasato, A., Seki, Y., Fumoto, M. and Arita, H. (2008) Augmented brain 5-HT crosses the blood-brain barrier through the 5-HT transporter in rat. Eur. J. Neurosci. 27, 2466-2472. https://doi.org/10.1111/j.1460-9568.2008.06201.x
  33. Nautiyal, K. M. and Hen, R. (2017) Serotonin receptors in depression: from A to B. F1000Res 6, 123.
  34. Nestler, E. J., Barrot, M. and Self, D. W. (2001) DeltaFosB: a sustained molecular switch for addiction. Proc. Natl. Acad. Sci. U. S. A. 98, 11042-11046. https://doi.org/10.1073/pnas.191352698
  35. Nishi, A., Kuroiwa, M. and Shuto, T. (2011) Mechanisms for the modulation of dopamine d(1) receptor signaling in striatal neurons. Front. Neuroanat. 5, 43.
  36. Pandey, S. and Srivanitchapoom, P. (2017) Levodopa-induced dyskinesia: clinical features, pathophysiology, and medical management. Ann. Indian Acad. Neurol. 20, 190-198. https://doi.org/10.4103/aian.AIAN_239_17
  37. Paolone, G., Brugnoli, A., Arcuri, L., Mercatelli, D. and Morari, M. (2015) Eltoprazine prevents levodopa-induced dyskinesias by reducing striatal glutamate and direct pathway activity. Mov. Disord. 30, 1728-1738. https://doi.org/10.1002/mds.26326
  38. Pettorruso, M., Martinotti, G., Di Nicola, M., Onofrj, M., Di Giannantonio, M., Conte, G. and Janiri, L. (2012) Amantadine in the treatment of pathological gambling: a case report. Front. Psychiatry 3, 102.
  39. Picconi, B., De Leonibus, E. and Calabresi, P. (2018) Synaptic plasticity and levodopa-induced dyskinesia: electrophysiological and structural abnormalities. J. Neural. Transm. (Vienna) 125, 1263-1271. https://doi.org/10.1007/s00702-018-1864-6
  40. Reeve, A., Simcox, E. and Turnbull, D. (2014) Ageing and Parkinson's disease: why is advancing age the biggest risk factor? Ageing Res. Rev. 14, 19-30. https://doi.org/10.1016/j.arr.2014.01.004
  41. Ryu, Y. K., Park, H. Y., Go, J., Lee, I. B., Choi, Y. K., Lee, C. H. and Kim, K. S. (2021) beta-Lapachone ameliorates L-DOPA-induced dyskinesia in a 6-OHDA-induced mouse model of Parkinson's disease. Mol. Med. Rep. 23, 217.
  42. Sasaki-Tanaka, R., Shibata, T., Moriyama, M., Okamoto, H., Kogure, H. and Kanda, T. (2022) Amantadine and rimantadine inhibit hepatitis A virus replication through the induction of autophagy. J. Virol. 96, e0064622.
  43. Sharma, S., Singh, S., Sharma, V., Singh, V. P. and Deshmukh, R. (2015) Neurobiology of l-DOPA induced dyskinesia and the novel therapeutic strategies. Biomed. Pharmacother. 70, 283-293. https://doi.org/10.1016/j.biopha.2015.01.029
  44. Sharma, V. D., Lyons, K. E. and Pahwa, R. (2018) Amantadine extended-release capsules for levodopa-induced dyskinesia in patients with Parkinson's disease. Ther. Clin. Risk Manag. 14, 665-673. https://doi.org/10.2147/TCRM.S144481
  45. Shimizu, S. and Ohno, Y. (2013) Improving the treatment of Parkinson's disease: a novel approach by modulating 5-HT(1A) receptors. Aging Dis. 4, 1-13.
  46. Svejda, B., Kidd, M., Timberlake, A., Harry, K., Kazberouk, A., Schimmack, S., Lawrence, B., Pfragner, R. and Modlin, I. M. (2013) Serotonin and the 5-HT7 receptor: the link between hepatocytes, IGF-1 and small intestinal neuroendocrine tumors. Cancer Sci. 104, 844-855. https://doi.org/10.1111/cas.12174
  47. Tambasco, N., Romoli, M. and Calabresi, P. (2018) Levodopa in Parkinson's disease: current status and future developments. Curr. Neuropharmacol. 16, 1239-1252. https://doi.org/10.2174/1570159X15666170510143821
  48. Thanvi, B., Lo, N. and Robinson, T. (2007) Levodopa-induced dyskinesia in Parkinson's disease: clinical features, pathogenesis, prevention and treatment. Postgrad. Med. J. 83, 384-388. https://doi.org/10.1136/pgmj.2006.054759
  49. Tronci, E., Lisci, C., Stancampiano, R., Fidalgo, C., Collu, M., Devoto, P. and Carta, M. (2013) 5-Hydroxy-tryptophan for the treatment of L-DOPA-induced dyskinesia in the rat Parkinson's disease model. Neurobiol. Dis. 60, 108-114. https://doi.org/10.1016/j.nbd.2013.08.014
  50. Urs, N. M., Bido, S., Peterson, S. M., Daigle, T. L., Bass, C. E., Gainetdinov, R. R., Bezard, E. and Caron, M. G. (2015) Targeting betaarrestin2 in the treatment of L-DOPA-induced dyskinesia in Parkinson's disease. Proc. Natl. Acad. Sci. U. S. A. 112, E2517-E2526.