DOI QR코드

DOI QR Code

탄산칼슘 동질이상체의 수용액 기반 합성법 및 형태학적 특성 리뷰

Review of Water-Based Synthetic Methods of Calcium Carbonate Polymorphs and Their Morphological Features

  • 김영재 (부경대학교 지구환경시스템과학부 환경지질과학전공 ) ;
  • 이선용 (고려대학교 지구환경과학과) ;
  • 이영재 (고려대학교 지구환경과학과)
  • YoungJae Kim (Division of Earth and Environmental System Sciences, Major of Environmental Geosciences, Pukyong National University) ;
  • Seon Yong Lee (Department of Earth and Environmental Sciences, Korea University) ;
  • Young Jae Lee (Department of Earth and Environmental Sciences, Korea University)
  • 투고 : 2023.04.17
  • 심사 : 2023.05.22
  • 발행 : 2023.06.28

초록

결정질 탄산칼슘(CaCO3)은 방해석(calcite), 아라고나이트(aragonite), 바테라이트(vaterite) 세 동질이상체로 다양한 지질 및 수중 환경에서 흔하게 발생한다. 또한, 탄산칼슘 광물은 기능성 재료로 사용될 수 있어 공학적인 용도로 많은 관심을 받고 있다. 자연계와 공학적인 세팅에서 생성되는 탄산칼슘의 형성 및 그 반응을 이해하고 다양한 생약 및 생의학 물질로 활용하기 위한 탄산칼슘 광물 형성에 대한 실험적 모사 방법(즉, 합성법)에 관한 연구가 활발히 진행되어왔다. 합성법에서 물을 용매로 탄산칼슘 결정 형성을 유도하는 방식(수용액-기반 합성법)은 자연계에서 발생하는 탄산염광물 형성 조건과 유사하므로 지질학 연구에서도 그 의미성이 매우 크다. 본 리뷰 논문에서는 문헌에서 보고되는 수용액-기반 탄산칼슘 합성법을 탄산칼슘 동질이상체 별로 분류한다. 또한, 여러 합성법에서 나타나는 결정의 형상 및 구조적 특성을 동질이상체 별로 분류하고 결정화 메커니즘을 통해 그 특성들을 토론하고자 한다.

Crystalline calcium carbonate (CaCO3) occurs in various geological and aqueous environments as calcite, aragonite, and vaterite. These minerals also have practical applications in engineered settings. Synthetic methods of calcium carbonate have been developed for scientific research and technical applications. For example, these methods have become widely adopted for studying the formation of CaCO3 minerals and (geo-)chemical processes involving these minerals in natural and engineered systems. Furthermore, these methods have the potential to be applied in various technical and biomedical fields. Water-based synthesis is particularly important for simulating the formation of calcium carbonate minerals in natural aqueous environments. This review paper describes the procedures and experimental conditions for water-based synthetic methods of each calcium carbonate polymorph, compares the morphological and structural features of the resulting crystals, and analyzes the crystallization mechanisms.

키워드

과제정보

This work was supported by a Research Grant of Pukyong National University(2022).

참고문헌

  1. Aizenberg, J., Albeck, S., Weiner, S. and Addadi, L. (1994) Crystal-protein interactions studied by overgrowth of calcite on biogenic skeletal elements. Journal of Crystal Growth, v.142, p.156-164. doi: 10.1016/0022-0248(94)90283-6
  2. Albeck, S., Weiner, S. and Addadi, L. (1996) Polysaccharides of intracrystalline glycoproteins modulate calcite crystal growth in vitro. Chemistry-a European Journal, v.2, p.278-284. doi: 10.1002/chem.19960020308
  3. Andreassen, J.-P. (2005) Formation mechanism and morphology in precipitation of vaterite-nano-aggregation or crystal growth? Journal of Crystal Growth, v.274, p.256-264. doi: 10.1016/j.jcrysgro.2004.09.090
  4. Andreassen, J.-P., Beck, R. and Nergaard, M. (2012) Biomimetic type morphologies of calcium carbonate grown in absence of additives. Faraday Discussions, v.159, p.247-261. doi: 10.1039/C2FD20056B
  5. Andreassen, J.P. and Hounslow, M. (2004) Growth and aggregation of vaterite in seeded-batch experiments. AIChE Journal, v.50, p.2772-2782. doi: 10.1002/aic.10205
  6. Bahrom, H., Goncharenko, A.A., Fatkhutdinova, L.I., Peltek, O.O., Muslimov, A.R., Koval, O.Y., Eliseev, I.E., Manchev, A., Gorin, D. and Shishkin, I.I. (2019) Controllable synthesis of calcium carbonate with different geometry: Comprehensive analysis of particle formation, cellular uptake, and biocompatibility. ACS Sustainable Chemistry & Engineering, v.7, p.19142-19156. doi: 10.1021/acssuschemeng.9b05128
  7. Boyjoo, Y., Pareek, V.K. and Liu, J. (2014) Synthesis of micro and nano-sized calcium carbonate particles and their applications. Journal of Materials Chemistry A, v.2, p.14270-14288. doi: 10.1039/C4TA02070G
  8. Busenberg, E. and Plummer, L. (1986) A comparative study of the dissolution and crystal growth kinetics of calcite and aragonite. Studies in Diagenesis, v.1578, p.139-168.
  9. Chang, R., Kim, S., Lee, S., Choi, S., Kim, M. and Park, Y. (2017) Calcium carbonate precipitation for CO2 storage and utilization: a review of the carbonate crystallization and polymorphism. Frontiers in Energy Research, v.5, p.17. doi: 10.3389/fenrg.2017.00017
  10. Checa, A.G., Jimenez-Lopez, C., Rodriguez-Navarro, A. and Machado, J.P. (2007) Precipitation of aragonite by calcitic bivalves in Mg-enriched marine waters. Marine Biology, v.150, p.819-827. doi: 10.1007/s00227-006-0411-4
  11. Fausett, H., Gayser, C. and Dash, A.K. (2000) Evaluation of quick disintegrating calcium carbonate tablets. AAPS PharmSciTech, v.1, p.37-43. doi: 10.1208/pt010320
  12. Gebauer, D., Volkel, A. and Colfen, H. (2008) Stable prenucleation calcium carbonate clusters. Science, v.322, p.1819-1822. doi: 10.1126/science.1164271
  13. Gebauer, D. and Colfen, H. (2011) Prenucleation clusters and nonclassical nucleation. Nano Today, v.6, p.564-584. doi: 10.1016/j.nantod.2011.10.005
  14. Gillikin, D.P., Lorrain, A., Navez, J., Taylor, J.W., Andre, L., Keppens, E., Baeyens, W. and Dehairs, F. (2005) Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells. Geochemistry, Geophysics, Geosystems, v.6. doi: 10.1029/2004GC000874
  15. Granasy, L., Pusztai, T., Tegze, G., Warren, J.A. and Douglas, J.F. (2005) Growth and form of spherulites. Physical Review E, 72, 011605. doi: 10.1103/PhysRevE.72.011605
  16. Hadiko, G., Han, Y.S., Fuji, M. and Takahashi, M. (2005) Synthesis of hollow calcium carbonate particles by the bubble templating method. Materials Letters, v.59, p.2519-2522. doi: 10.1016/j.matlet.2005.03.036
  17. He, M., Cho, B.-U. and Won, J.M. (2016) Effect of precipitated calcium carbonate-cellulose nanofibrils composite filler on paper properties. Carbohydrate Polymers, v.136, p.820-825. doi: 10.1016/j.carbpol.2015.09.069
  18. Ihli, J., Bots, P., Kulak, A., Benning, L.G. and Meldrum, F.C. (2013) Elucidating Mechanisms of Diffusion-Based Calcium Carbonate Synthesis Leads to Controlled Mesocrystal Formation. Advanced Functional Materials, v.23, p.1965-1973. doi: 10.1002/adfm.201201742
  19. Jiang, J., Wu, Y., Chen, C., Wang, X., Zhao, H., Xu, S., Yang, C. and Xiao, B. (2018) A novel route to prepare the metastable vaterite phase of CaCO3 from CaCl2 ethanol solution and Na2CO3 aqueous solution. Advanced Powder Technology, v.29, p.2416-2422. doi: 10.1016/j.apt.2018.06.020
  20. Jimoh, O.A., Ariffin, K.S., Hussin, H.B. and Temitope, A.E. (2018) Synthesis of precipitated calcium carbonate: a review. Carbonates and Evaporites, v.33, p.331-346. doi: 10.1007/s13146-017-0341-x
  21. Karakas, F., Hassas, B.V. and Celik, M.S. (2015) Effect of precipitated calcium carbonate additions on waterborne paints at different pigment volume concentrations. Progress in Organic Coatings, v.83, p.64-70. doi: 10.1016/j.porgcoat.2015.02.003
  22. Keith, M., Anderson, G. and Eichler, R. (1964) Carbon and oxygen isotopic composition of mollusk shells from marine and freshwater environments. Geochimica et Cosmochimica Acta, v.28, p.1757-1786. doi: 10.1016/0016-7037(64)90021-3
  23. Kim, Y., Abdilla, B., Yuan, K., De Andrade, V., Sturchio, N.C., Lee, S.S. and Fenter P. (2021) Replacement of calcium carbonate polymorphs by cerussite. ACS Earth and Space Chemistry, v.5, p.2433-2441. doi: 10.1021/acsearthspacechem.1c00177
  24. Kim, Y., Tekawade, A., Lee, S.S. and Fenter, P. (2023) Morphological and crystallographic controls in the replacement of calcite and aragonite by cerussite and otavite. Geochimica et Cosmochimica Acta, v.341, p.16-27. doi: 10.1016/j.gca.2022.11.010
  25. Kitano, Y. and Kanamori, N. (1966) Synthesis of magnesian calcite at low temperatures and pressures. Geochemical Journal, v.1, p.1-10. doi: 10.2343/geochemj.1.1
  26. Kontrec, J., Tomasic, N., Matijakovic Mlinaric, N., Kralj, D. and Njegic Dzakula, B. (2021) Effect of pH and Type of Stirring on the Spontaneous Precipitation of CaCO3 at Identical Initial Supersaturation, Ionic Strength and a (Ca2+)/a (CO32-) Ratio. Crystals, v.11, p.1075. doi: 10.3390/cryst11091075
  27. Kulp, E.A. and Switzer, J.A. (2007) Electrochemical biomineralization: The deposition of calcite with chiral morphologies. Journal of the American Chemical Society, v.129, p.15120-15121. doi: 10.1021/ja076303b
  28. Leal, W.D., Bergeron, C.L., Rutherford, T.J. and Majewski, M.B. (2022) Conversion of Electrochemically Deposited Aragonite Crystallites to Perovskite through Ion Exchange. Crystal Growth & Design, v.22, p.2364-2371. doi: 10.1021/acs.cgd.1c01449
  29. Lee, S.Y., Jo, U., Chang, B. and Lee, Y.J. (2020) Effects of Preferential Incorporation of Carboxylic Acids on the Crystal Growth and Physicochemical Properties of Aragonite. Crystals, v.10, p.960. doi: 10.3390/cryst10110960
  30. Lee, Y.J., Reeder, R., Wenskus, R. and Elzinga, E. (2002) Structural relaxation in the MnCO3-CaCO3 solid solution: a Mn K-edge EXAFS study. Physics and Chemistry of Minerals, v.29, p.585-594. doi: 10.1007/s00269-002-0274-2
  31. Li, H., Yao, Q.-Z., Wang, F.-P., Huang, Y.-R., Fu, S.-Q. and Zhou, G.-T. (2019) Insights into the formation mechanism of vaterite mediated by a deep-sea bacterium Shewanella piezotolerans WP3. Geochimica et Cosmochimica Acta, v.256, p.35-48. doi: 10.1016/j.gca.2018.06.011
  32. Li, P., Pan, S.-Y., Pei, S., Lin, Y.J. and Chiang, P.-C. (2016) Challenges and perspectives on carbon fixation and utilization technologies: An overview. Aerosol and Air Quality Research, v.16, p.1327-1344. doi: 10.4209/aaqr.2015.12.0698
  33. Loste, E., Wilson, R.M., Seshadri, R. and Meldrum, F.C. (2003) The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies. Journal of Crystal Growth, v.254, p.206-218. doi: 10.1016/S0022-0248(03)01153-9
  34. Ma, M., Wang, Y., Cao, X., Lu, W. and Guo, Y. (2019) Temperature and supersaturation as key parameters controlling the spontaneous precipitation of calcium carbonate with distinct physicochemical properties from pure aqueous solutions. Crystal Growth & Design, v.19, p.6972-6988. doi: 10.1021/acs.cgd.9b00758
  35. Morse, J.W., Arvidson, R.S. and Luttge, A. (2007) Calcium carbonate formation and dissolution. Chemical Reviews, v.107, p.342-381. doi: 10.1021/cr050358j
  36. Myszka, B., Schussler, M., Hurle, K., Demmert, B., Detsch, R., Boccaccini, A.R. and Wolf, S.E. (2019) Phase-specific bioactivity and altered Ostwald ripening pathways of calcium carbonate polymorphs in simulated body fluid. RSC Advances, v.9, p.18232-18244. doi: 10.1039/C9RA01473J
  37. Niu, Y.-Q., Liu, J.-H., Aymonier, C., Fermani, S., Kralj, D., Falini, G. and Zhou, C.-H. (2022) Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chemical Society Reviews, v.51, p.7883-7943. doi: 10.1039/D1CS00519G
  38. Ogino, T., Suzuki, T. and Sawada, K. (1987) The formation and transformation mechanism of calcium carbonate in water. Geochimica et Cosmochimica Acta, v.51, p.2757-2767. doi: 10.1016/0016-7037(87)90155-4
  39. Ok, Y.S., Oh, S.-E., Ahmad, M., Hyun, S., Kim, K.-R., Moon, D.H., Lee, S.S., Lim, K.J., Jeon, W.-T. and Yang, J.E. (2010) Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environmental Earth Sciences, v.61, p.1301-1308. doi: 10.1007/s12665-010-0674-4
  40. Ok, Y.S., Lee, S.S., Jeon, W.-T., Oh, S.-E., Usman, A.R. and Moon, D.H. (2011) Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil. Environmental Geochemistry and Health, v.33, p.31-39. doi: 10.1007/s10653-010-9362-2
  41. Oomori, T., Kaneshima, H., Maezato, Y. and Kitano, Y. (1987) Distribution coefficient of Mg2+ ions between calcite and solution at 10-50℃. Marine Chemistry, v.20, p.327-336. doi: 10.1016/0304-4203(87)90066-1
  42. Ostwald, W. (1897) Studies on the formation and change of solid matter. Z. Phys. Chem., v.22, p.289-302. https://doi.org/10.1515/zpch-1897-2233
  43. Plummer, L., Parkhurst, D. and Wigley, T. (1979) Critical review of the kinetics of calcite dissolution and precipitation. 10.1021/bk-1979-0093.ch025. doi: 10.1021/bk-1979-0093.ch025
  44. Poh, B., Lee, P. and Chuah, S. (2008) Adhesion property of epoxidized natural rubber (ENR)-based adhesives containing calcium carbonate. Express Polym Lett, v.2, p.398-403. doi: 10.3144/expresspolymlett.2008.48
  45. Reddy, M. and Nancollas, G. (1976) The crystallization of calcium carbonate: IV. The effect of magnesium, strontium and sulfate ions. Journal of Crystal Growth, v.35, p.33-38. doi: 10.1016/0022-0248(76)90240-2
  46. Reeder, R.J., Nugent, M., Lamble, G.M., Tait, C.D. and Morris, D.E. (2000) Uranyl incorporation into calcite and aragonite: XAFS and luminescence studies. Environmental Science & Technology, v.34, p.638-644. doi: 10.1021/es990981j
  47. Rodriguez-Blanco, J.D., Shaw, S. and Benning, L.G. (2011) The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale, v.3, p.265-271. doi: 10.1039/C0NR00589D
  48. Rodriguez-Navarro, C., Jimenez-Lopez, C., Rodriguez-Navarro, A., Gonzalez-Munoz, M.T. and Rodriguez-Gallego, M. (2007) Bacterially mediated mineralization of vaterite. Geochimica et Cosmochimica Acta, v.71, p.1197-1213. doi: 10.1016/j.gca.2006.11.031
  49. Sand, K., Rodriguez-Blanco, J., Makovicky, E., Benning, L.G. and Stipp, S. (2012) Crystallization of CaCO3 in water-alcohol mixtures: spherulitic growth, polymorph stabilization, and morphology change. Crystal Growth & Design, v.12, p.842-853. doi: 10.1021/cg2012342
  50. Santillan, J. and Williams, Q. (2004) A high pressure X-ray diffraction study of aragonite and the post-aragonite phase transition in CaCO3. American Mineralogist, v.89, p.1348-1352. doi: 10.2138/am-2004-8-925
  51. Spanos, N. and Koutsoukos, P.G. (1998) The transformation of vaterite to calcite: effect of the conditions of the solutions in contact with the mineral phase. Journal of Crystal Growth, v.191, p.783-790. doi: 10.1016/S0022-0248(98)00385-6
  52. Tang, Y., Elzinga, E.J., Lee, Y.J. and Reeder, R.J. (2007) Coprecipitation of chromate with calcite: batch experiments and X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, v.71, p.1480-1493. doi: 10.1016/j.gca.2006.12.010
  53. ten Wolde, P.R. and Frenkel, D. (1999) Homogeneous nucleation and the Ostwald step rule. Physical Chemistry Chemical Physics, v.1, p.2191-2196. doi: 10.1039/A809346F
  54. Wang, H. and Han, Y. (2014) A compromise between competing forces dominating the diversity of aragonite structures. CrystEngComm, v.16, p.1971-1977. doi: 10.1039/C3CE42192A
  55. Wray, J.L. and Daniels, F. (1957) Precipitation of calcite and aragonite. Journal of the American Chemical Society, v.79, p.2031-2034. doi: 10.1021/ja01566a001
  56. Zeller, E.J. and Wray, J.L. (1956) Factors influencing precipitation of calcium carbonate. AAPG Bulletin, v.40, p.140-152. doi: 10.1306/5CEAE30A-16BB-11D7-8645000102C1865D
  57. Zeng, M., Kim, Y.-Y., Anduix-Canto, C., Frontera, C., Laundy, D., Kapur, N., Christenson, H.K. and Meldrum, F.C. (2018) Confinement generates single-crystal aragonite rods at room temperature. Proceedings of the National Academy of Sciences, v.115, p.7670-7675. doi: 10.1073/pnas.1718926115