DOI QR코드

DOI QR Code

Antibiotic resistance in Neisseria gonorrhoeae: broad-spectrum drug target identification using subtractive genomics

  • Received : 2022.09.29
  • Accepted : 2023.01.06
  • Published : 2023.03.31

Abstract

Neisseria gonorrhoeae is a Gram-negative aerobic diplococcus bacterium that primarily causes sexually transmitted infections through direct human sexual contact. It is a major public health threat due to its impact on reproductive health, the widespread presence of antimicrobial resistance, and the lack of a vaccine. In this study, we used a bioinformatics approach and performed subtractive genomic methods to identify potential drug targets against the core proteome of N. gonorrhoeae (12 strains). In total, 12,300 protein sequences were retrieved, and paralogous proteins were removed using CD-HIT. The remaining sequences were analyzed for non-homology against the human proteome and gut microbiota, and screened for broad-spectrum analysis, druggability, and anti-target analysis. The proteins were also characterized for unique interactions between the host and pathogen through metabolic pathway analysis. Based on the subtractive genomic approach and subcellular localization, we identified one cytoplasmic protein, 2Fe-2S iron-sulfur cluster binding domain-containing protein (NGFG RS03485), as a potential drug target. This protein could be further exploited for drug development to create new medications and therapeutic agents for the treatment of N. gonorrhoeae infections.

Keywords

Acknowledgement

The authors would like to thank the Management and Science University for supporting this research.

References

  1. Centers for Disease Control and Prevention. 2019 Antibiotic Resistance Threats Report: Neisseria gonorrhoeae. Atlanta: Centers for Disease Control and Prevention, 2019.
  2. Unemo M, del Rio C, Shafer WM. Antimicrobial resistance expressed by Neisseria gonorrhoeae: a major global public health problem in the 21st century. In: Emerging Infections 10 (Scheld WM, Hughes JM, Whitley RJ, eds.). Washington, DC: American Society for Microbiology, 2016. pp. 213-237.
  3. Rice PA, Shafer WM, Ram S, Jerse AE. Neisseria gonorrhoeae: drug resistance, mouse models, and vaccine development. Annu Rev Microbiol 2017;71:665-686. https://doi.org/10.1146/annurev-micro-090816-093530
  4. Jordan PW, Snyder LA, Saunders NJ. Strain-specific differences in Neisseria gonorrhoeae associated with the phase variable gene repertoire. BMC Microbiol 2005;5:21.
  5. Unemo M, Nicholas RA. Emergence of multidrug-resistant, extensively drug-resistant and untreatable gonorrhea. Future Microbiol 2012;7:1401-1422. https://doi.org/10.2217/fmb.12.117
  6. Unemo M, Shafer WM. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev 2014;27:587-613. https://doi.org/10.1128/CMR.00010-14
  7. Barh D, Kumar A. In silico identification of candidate drug and vaccine targets from various pathways in Neisseria gonorrhoeae. In Silico Biol 2009;9:225-231. https://doi.org/10.3233/ISB-2009-0399
  8. Khan MT, Mahmud A, Iqbal A, Hoque SF, Hasan M. Subtractive genomics approach towards the identification of novel therapeutic targets against human Bartonella bacilliformis. Inform Med Unlocked 2020;20:100385.
  9. Omeershffudin UN, Kumar S. In silico approach for mining of potential drug targets from hypothetical proteins of bacterial proteome. Int J Mol Biol Open Access 2019;4:145-152. https://doi.org/10.15406/ijmboa.2019.04.00111
  10. Shanmugham B, Pan A. Identification and characterization of potential therapeutic candidates in emerging human pathogen Mycobacterium abscessus: a novel hierarchical in silico approach. PLoS One 2013;8:e59126.
  11. Omeershffudin UNM, Kumar S. Antimicrobial resistance in Klebsiella pneumoniae: identification of bacterial DNA adenine methyltransferase as a novel drug target from hypothetical proteins using subtractive genomics. Genomics Inform 2022;20:e47.
  12. Barh D, Jain N, Tiwari S, Parida BP, D'Afonseca V, Li L, et al. A novel comparative genomics analysis for common drug and vaccine targets in Corynebacterium pseudotuberculosis and other CMN group of human pathogens. Chem Biol Drug Des 2011;78:73-84. https://doi.org/10.1111/j.1747-0285.2011.01118.x
  13. Barh D, Tiwari S, Jain N, Ali A, Santos AR, Misra AN, et al. In silico subtractive genomics for target identification in human bacterial pathogens. Drug Dev Res 2018;72:162-177. https://doi.org/10.1002/ddr.20413
  14. Madabhavi PJ, Shanmuga Priya VG, Rakesh NR, Honagudi PS, Jiddagi S. Subtractive genomics: a promising way to combat pathogens (a review). Int Res J Eng Technol 2015;2:1800-1803.
  15. Georrge JJ, Umrania VV. Subtractive genomics approach to identify putative drug targets and identification of drug-like molecules for beta subunit of DNA polymerase III in Streptococcus species. Appl Biochem Biotechnol 2012;167:1377-1395. https://doi.org/10.1007/s12010-012-9620-0
  16. Lei C, Kumar S. Yersinia pestis antibiotic resistance: a systematic review. Osong Public Health Res Perspect 2022;13:24-36. https://doi.org/10.24171/j.phrp.2021.0288
  17. Li Y, Kumar S, Zhang L, Wu H. Klebsiella pneumonia and its antibiotic resistance: a bibliometric analysis. Biomed Res Int 2022;2022:1668789.
  18. Uddin R, Saeed K. Identification and characterization of potential drug targets by subtractive genome analyses of methicillin resistant Staphylococcus aureus. Comput Biol Chem 2014;48:55-63. https://doi.org/10.1016/j.compbiolchem.2013.11.005
  19. Sarangi AN, Aggarwal R, Rahman Q, Trivedi N. Subtractive genomics approach for in silico identification and characterization of novel drug targets in Neisseria meningitides serogroup B. J Comput Sci Syst Biol 2009;2:255-258. https://doi.org/10.4172/jcsb.1000038
  20. Ortiz AM, Santander PE, Lugo PJ. Neisseria gonorrhoeae: a wayward pathogen. Microbiological concepts, antimicrobial resistance and its epidemiological surveillance in Chile. Rev Chilena Infectol 2021;38:512-522.
  21. Rahman N, Muhammad I, Nayab GE, Khan H, Filosa R, Xiao J, et al. In-silico subtractive proteomic analysis approach for therapeutic targets in MDR Salmonella enterica subsp. enterica serovar Typhi str. CT18. Curr Top Med Chem 2019;19:2708-2717. https://doi.org/10.2174/1568026619666191105102156
  22. Zhang R, Ou HY, Zhang CT. DEG: a database of essential genes. Nucleic Acids Res 2004;32:D271-D272. https://doi.org/10.1093/nar/gkh024
  23. Sharma A, Pan A. Identification of potential drug targets in Yersinia pestis using metabolic pathway analysis: MurE ligase as a case study. Eur J Med Chem 2012;57:185-195. https://doi.org/10.1016/j.ejmech.2012.09.018
  24. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, et al. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 2005;33:D325-D328. https://doi.org/10.1093/nar/gki008
  25. The UniProt C. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017;45:D158-D169. https://doi.org/10.1093/nar/gkw1099
  26. Sharma OP, Kumar MS. Essential proteins and possible therapeutic targets of Wolbachia endosymbiont and development of FiloBase: a comprehensive drug target database for Lymphatic filariasis. Sci Rep 2016;6:19842.
  27. Pearson WR. Effective protein sequence comparison. Methods Enzymol 1996;266:227-258. https://doi.org/10.1016/S0076-6879(96)66017-0
  28. Pearson WR. Comparison of methods for searching protein sequence databases. Protein Sci 1995;4:1145-1160. https://doi.org/10.1002/pro.5560040613
  29. Collins JF, Coulson AF, Lyall A. The significance of protein sequence similarities. Comput Appl Biosci 1988;4:67-71. https://doi.org/10.1093/bioinformatics/4.1.67
  30. Recanatini M, Bottegoni G, Cavalli A. In silico antitarget screening. Drug Discov Today Technol 2004;1:209-215. https://doi.org/10.1016/j.ddtec.2004.10.004
  31. Madeira F, Pearce M, Tivey AR, Basutkar P, Lee J, Edbali O, et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res 2022;50:W276-W279. https://doi.org/10.1093/nar/gkac240
  32. Urban M, Pant R, Raghunath A, Irvine AG, Pedro H, Hammond-Kosack KE. The Pathogen-Host Interactions database (PHI-base): additions and future developments. Nucleic Acids Res 2015;43:D645-D655. https://doi.org/10.1093/nar/gku1165
  33. Ammari MG, Gresham CR, McCarthy FM, Nanduri B. HPIDB 2. 0: a curated database for host-pathogen interactions. Database (Oxford) 2016;2016:baw103.
  34. Durmus Tekir S, Cakir T, Ardic E, Sayilirbas AS, Konuk G, Konuk M, et al. PHISTO: pathogen-host interaction search tool. Bioinformatics 2013;29:1357-1358. https://doi.org/10.1093/bioinformatics/btt137
  35. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016;44:D457-D462. https://doi.org/10.1093/nar/gkv1070
  36. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007;35:W182-W185. https://doi.org/10.1093/nar/gkm321
  37. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010;26:1608-1615. https://doi.org/10.1093/bioinformatics/btq249
  38. Rappuoli R. Reverse vaccinology. Curr Opin Microbiol 2000;3:445-450. https://doi.org/10.1016/S1369-5274(00)00119-3
  39. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 2008;36:D901-D906. https://doi.org/10.1093/nar/gkm958
  40. Bakheet TM, Doig AJ. Properties and identification of human protein drug targets. Bioinformatics 2009;25:451-457. https://doi.org/10.1093/bioinformatics/btp002
  41. Kim B, Jo J, Han J, Park C, Lee H. In silico re-identification of properties of drug target proteins. BMC Bioinformatics 2017;18:248.
  42. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. In: The Proteomics Protocols Handbook (Walker JM, ed.). Totowa: Humana Press, 2005. pp. 571-608.
  43. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004;340:783-795. https://doi.org/10.1016/j.jmb.2004.05.028
  44. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001;305:567-580. https://doi.org/10.1006/jmbi.2000.4315
  45. Jensen LJ, Gupta R, Staerfeldt HH, Brunak S. Prediction of human protein function according to Gene Ontology categories. Bioinformatics 2003;19:635-642. https://doi.org/10.1093/bioinformatics/btg036
  46. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000;25:25-29. https://doi.org/10.1038/75556
  47. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, et al. The Pfam protein families database. Nucleic Acids Res 2010;38:D211-D222. https://doi.org/10.1093/nar/gkp985
  48. Sigrist CJ, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M, et al. PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform 2002;3:265-274. https://doi.org/10.1093/bib/3.3.265
  49. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 2004;32:D258-D261. https://doi.org/10.1093/nar/gkh036
  50. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer EL, et al. Pfam: the protein families database in 2021. Nucleic Acids Res 2021;49:D412-D419. https://doi.org/10.1093/nar/gkaa913
  51. Sigrist CJ, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, et al. New and continuing developments at PROSITE. Nucleic Acids Res 2013;41:D344-D347. https://doi.org/10.1093/nar/gks1067
  52. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 2014;42:W252-W258. https://doi.org/10.1093/nar/gku340
  53. Schrodinger LL, DeLano W. PyMOL. Schrodinger, 2020. Accessed 2022 Feb 20. Available from: http://www.pymol.org/pymol.
  54. Laskowski RA, McArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 1993;26:283-291. https://doi.org/10.1107/S0021889892009944
  55. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 2007;35:W407-W410. https://doi.org/10.1093/nar/gkm290
  56. Tanwer P, Kolora SR, Babbar A, Saluja D, Chaudhry U. Identification of potential therapeutic targets in Neisseria gonorrhoeae by an in-silico approach. J Theor Biol 2020;490:110172.
  57. Yang L, Tan J, O'Brien EJ, Monk JM, Kim D, Li HJ, et al. Systems biology definition of the core proteome of metabolism and expression is consistent with high-throughput data. Proc Natl Acad Sci U S A 2015;112:10810-10815. https://doi.org/10.1073/pnas.1501384112
  58. Klymkowsky MW, Cooper MM. 9.10: Paralogous genes and gene families. Biology LibreTexts, 2021. Accessed 2022 Feb 20. Available from: https://bio.libretexts.org/Bookshelves/Cell_and_Molecular_Biology/Book %3A_Biofundamentals_(Klymkowsky_and_Cooper)/09%3A_Genomes_genes_and_regulatory_networks/ 9.10%3A_Paralogous_genes_and_gene_families.
  59. Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH. Stacks: building and genotyping Loci de novo from short-read sequences. G3 (Bethesda) 2011;1:171-182. https://doi.org/10.1534/g3.111.000240
  60. McKinney GJ, Waples RK, Seeb LW, Seeb JE. Paralogs are revealed by proportion of heterozygotes and deviations in read ratios in genotyping-by-sequencing data from natural populations. Mol Ecol Resour 2017;17:656-669. https://doi.org/10.1111/1755-0998.12613
  61. Zhou W, Soghigian J, Xiang QJ. A new pipeline for removing paralogs in target enrichment data. Syst Biol 2022;71:410-425. https://doi.org/10.1093/sysbio/syab044
  62. Madlung A. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity (Edinb) 2013;110:99-104. https://doi.org/10.1038/hdy.2012.79
  63. Solanki V, Tiwari V. Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against Acinetobacter baumannii. Sci Rep 2018;8:9044.
  64. Raman K, Yeturu K, Chandra N. targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Syst Biol 2008;2:109.
  65. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol 2015;21:8787-8803. https://doi.org/10.3748/wjg.v21.i29.8787
  66. Hossain T, Kamruzzaman M, Choudhury TZ, Mahmood HN, Nabi A, Hosen MI. Application of the subtractive genomics and molecular docking analysis for the identification of novel putative drug targets against Salmonella enterica subsp. enterica serovar Poona.Biomed Res Int 2017;2017:3783714.
  67. Folador EL, Tiwari S, Da Paz Barbosa CE, Jamal SB, Da Costa Schulze M, Barh D, et al. Protein-protein interactions: an overview. In: Encyclopedia of Bioinformatics and Computational Biology (Ranganathan S, Gribskov M, Nakai K, Schonbach C, eds.). Amsterdam: Elsevier, 2018. pp. 821-833.
  68. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010;38:D355-D360. https://doi.org/10.1093/nar/gkp896
  69. Anishetty S, Pulimi M, Pennathur G. Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis. Comput Biol Chem 2005;29:368-378. https://doi.org/10.1016/j.compbiolchem.2005.07.001
  70. Boundless microbiology. Biosynthesis. Course Hero, 2022. Accessed 2022 Feb 20. Available from: https://courses.lumenlearning.com/boundless-microbiology/chapter/biosynthesis/.
  71. Jackman JE, Fierke CA, Tumey LN, Pirrung M, Uchiyama T, Tahir SH, et al. Antibacterial agents that target lipid A biosynthesis in gram-negative bacteria. Inhibition of diverse UDP-3-O-(r-3- hydroxymyristoyl)-n-acetylglucosamine deacetylases by substrate analogs containing zinc binding motifs. J Biol Chem 2000;275:11002-11009. https://doi.org/10.1074/jbc.275.15.11002
  72. Lerouge I, Vanderleyden J. O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol Rev 2002;26:17-47. https://doi.org/10.1111/j.1574-6976.2002.tb00597.x
  73. Samuel G, Reeves P. Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr Res 2003;338:2503-2519. https://doi.org/10.1016/j.carres.2003.07.009
  74. Liu HW, Thorson JS. Pathways and mechanisms in the biogenesis of novel deoxysugars by bacteria. Annu Rev Microbiol 1994;48:223-256. https://doi.org/10.1146/annurev.mi.48.100194.001255
  75. PubChem. Nicotinate and Nicotinamide Metabolism Pathway. Bethesda: National Center for Biotechnology Information, 2020. Accessed 2022 Jan 18. Available from: https://pubchem.ncbi. nlm.nih.gov/pathway/PathBank:SMP0087241.
  76. Johnson MD, Echlin H, Dao TH, Rosch JW. Characterization of NAD salvage pathways and their role in virulence in Streptococcus pneumoniae. Microbiology (Reading) 2015;161:2127-2136. https://doi.org/10.1099/mic.0.000164
  77. Mortenson LE, Valentine RC, Carnahan JE. Ferredoxin in the phosphoroclastic reaction of pyruvic acid and its relation to nitrogen fixation in Clostridium pasteurianum. J Biol Chem 1963;238:794-800. https://doi.org/10.1016/S0021-9258(18)81337-0
  78. Meyer J, Bruschi MH, Bonicel JJ, Bovier-Lapierre GE. Amino acid sequence of [2Fe-2S] ferredoxin from Clostridium pasteurianum. Biochemistry 1986;25:6054-6061. https://doi.org/10.1021/bi00368a033
  79. Bruschi M, Guerlesquin F. Structure, function and evolution of bacterial ferredoxins. FEMS Microbiol Rev 1988;4:155-175. https://doi.org/10.1111/j.1574-6968.1988.tb02741.x
  80. Miller HK, Auerbuch V. Bacterial iron-sulfur cluster sensors in mammalian pathogens. Metallomics 2015;7:943-956. https://doi.org/10.1039/C5MT00012B
  81. QuickGO. GO:0051537. Cambridgeshire: European Bioinformatics Institute (EMBL-EBI), 2021. Accessed 2022 Feb 25. Available from: https://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0051537.
  82. Catalano-Dupuy DL, Lopez-Rivero A, Soldano A, Ceccarelli EA. Redox proteins as targets for drugs development against pathogens. Curr Pharm Des 2013;19:2594-2605. https://doi.org/10.2174/1381612811319140009
  83. Davis KM, Krupp J, Clark S, Isberg RR. Iron-sulfur cluster repair contributes to Yersinia pseudotuberculosis survival within deep tissues. Infect Immun 2019;87:e00533-19.
  84. Hopper AC. The electron transfer chains of Neisseria gonorrhoeae [dissertation]. Birmingham: University of Birmingham, 2011.
  85. Berg JM. Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. J Biol Chem 1990;265:6513-6516. https://doi.org/10.1016/S0021-9258(19)39172-0
  86. Lim KH, Jones CE, vanden Hoven RN, Edwards JL, Falsetta ML, Apicella MA, et al. Metal binding specificity of the MntABC permease of Neisseria gonorrhoeae and its influence on bacterial growth and interaction with cervical epithelial cells. Infect Immun 2008;76:3569-3576. https://doi.org/10.1128/IAI.01725-07
  87. Krueger KM, Barbieri JT. The family of bacterial ADP-ribosylating exotoxins. Clin Microbiol Rev 1995;8:34-47. https://doi.org/10.1128/CMR.8.1.34
  88. Rasko DA, Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 2010;9:117-128. https://doi.org/10.1038/nrd3013
  89. Burnett JC, Ruthel G, Stegmann CM, Panchal RG, Nguyen TL, Hermone AR, et al. Inhibition of metalloprotease botulinum serotype A from a pseudo-peptide binding mode to a small molecule that is active in primary neurons. J Biol Chem 2007;282: 5004-5014. https://doi.org/10.1074/jbc.M608166200
  90. Ivarsson ME, Leroux JC, Castagner B. Targeting bacterial toxins. Angew Chem Int Ed Engl 2012;51:4024-4045. https://doi.org/10.1002/anie.201104384
  91. Schmidt A, Kochanowski K, Vedelaar S, Ahrne E, Volkmer B, Callipo L, et al. The quantitative and condition-dependent Escherichia coli proteome. Nat Biotechnol 2016;34:104-110. https://doi.org/10.1038/nbt.3418
  92. Technical Brief. Vol. 8. Protein Structure. Bethlehem: Particle Sciences Drug Development Services, 2009.