DOI QR코드

DOI QR Code

A network pharmacology and molecular docking approach in the exploratory investigation of the biological mechanisms of lagundi (Vitex negundo L.) compounds against COVID-19

  • Robertson G. Rivera (Pharmaceutical Chemistry Department, College of Pharmacy, University of the Philippines Manila) ;
  • Patrick Junard S. Regidor (Pharmaceutical Chemistry Department, College of Pharmacy, University of the Philippines Manila) ;
  • Edwin C. Ruamero Jr (Pharmaceutical Chemistry Department, College of Pharmacy, University of the Philippines Manila) ;
  • Eric John V. Allanigue (Department of Pharmacology and Toxicology, College of Medicine, University of the Philippines Manila) ;
  • Melanie V. Salinas (Safety and Medical Affairs Department, Clinchoice Inc.)
  • Received : 2022.09.22
  • Accepted : 2023.02.28
  • Published : 2023.03.31

Abstract

Coronavirus disease 2019 (COVID-19) is an inflammatory and infectious disease caused by severe acute respiratory syndrome coronavirus 2 virus with a complex pathophysiology. While COVID-19 vaccines and boosters are available, treatment of the disease is primarily supportive and symptomatic. Several research have suggested the potential of herbal medicines as an adjunctive treatment for the disease. A popular herbal medicine approved in the Philippines for the treatment of acute respiratory disease is Vitex negundo L. In fact, the Department of Science and Technology of the Philippines has funded a clinical trial to establish its potential as an adjunctive treatment for COVID-19. Here, we utilized network pharmacology and molecular docking in determining pivotal targets of Vitex negundo compounds against COVID-19. The results showed that significant targets of Vitex negundo compounds in COVID-19 are CSB, SERPINE1, and PLG which code for cathepsin B, plasminogen activator inhibitor-1, and plasminogen, respectively. Molecular docking revealed that α-terpinyl acetate and geranyl acetate have good binding affinity in cathepsin B; 6,7,4-trimethoxyflavanone, 5,6,7,8,3',4',5'-heptamethoxyflavone, artemetin, demethylnobiletin, gardenin A, geranyl acetate in plasminogen; and 7,8,4-trimethoxyflavanone in plasminogen activator inhibitor-1. While the results are promising, these are bound to the limitations of computational methods and further experimentation are needed to completely establish the molecular mechanisms of Vitex negundo against COVID-19.

Keywords

References

  1. Coronavirus disease (COVID-19). Geneva: World Health Organization, 2022. Accessed 2022 Sep 13. Available from: https://www.who.int/health-topics/coronavirus.
  2. Clinical management of COVID-19: living guideline, 23 June 2022. Geneva: World Health Organization, 2022. Accessed 2022 Sep 13. Available from: https://www.who.int/publications-detail-redirect/WHO-2019-nCoV-clinical-2022-1.
  3. Demeke CA, Woldeyohanins AE, Kifle ZD. Herbal medicine use for the management of COVID-19: a review article. Metabol Open 2021;12:100141.
  4. Silveira D, Prieto-Garcia JM, Boylan F, Estrada O, Fonseca-Bazzo YM, Jamal CM, et al. COVID-19: is there evidence for the use of herbal medicines as adjuvant symptomatic therapy? Front Pharmacol 2020;11:581840.
  5. Alegado-Bagaoisan DM, Castro MC, Purificacion JM. A systematic review on Vitex negundo (NIRPROMP formulations) for the treatment of acute cough of mild to moderate severity in pediatric patients. Acta Med Philipp 2020;54:36-43. https://doi.org/10.47895/amp.v54i1.1096
  6. Efficacy and safety of Vitex negundo for MILD COVID-19 Trial (EVICT Program). Taguig City: HERDIN PLUS, 2022. Accessed 2022 Sep 13. Available from: https://www.herdin.ph/index.php/registry? view=research&layout=details&cid=2992.
  7. Philippine COVID-19 Living Recommendations. Quezon City: Philippine Society for Microbiology and Infectious Diseases, 2022. Accessed 2022 Sep 13. Available from: https://www.psmid.org/philippine-covid-19-living-recommendations-3/.
  8. Cayona R, Creencia E. Discovery of a "cocktail" of potential SARS-CoV-2 main protease inhibitors through virtual screening of known chemical components of Vitex negundo L. ("Lagundi"). Med Chem 2022;18:364-381. https://doi.org/10.2174/1573406417666210618132003
  9. Mitra D, Verma D, Mahakur B, Kamboj A, Srivastava R, Gupta S, et al. Molecular docking and simulation studies of natural compounds of Vitex negundo L. against papain-like protease (PL(- pro)) of SARS CoV-2 (coronavirus) to conquer the pandemic situation in the world. J Biomol Struct Dyn 2022;40:5665-5686. https://doi.org/10.1080/07391102.2021.1873185
  10. Diniz LRL, Perez-Castillo Y, Elshabrawy HA, Filho C, de Sousa DP. Bioactive terpenes and their derivatives as potential SARSCoV-2 proteases inhibitors from molecular modeling studies. Biomolecules 2021;11:74.
  11. Issa SS, Sokornova SV, Zhidkin RR, Matveeva TV. The main protease of SARS-CoV-2 as a target for phytochemicals against coronavirus. Plants (Basel) 2022;11:1862.
  12. Alzaabi MM, Hamdy R, Ashmawy NS, Hamoda AM, Alkhayat F, Khademi NN, et al. Flavonoids are promising safe therapy against COVID-19. Phytochem Rev 2022;21:291-312. https://doi.org/10.1007/s11101-021-09759-z
  13. Zhang L, Yang K, Wang M, Zeng L, Sun E, Zhang F, et al. Exploring the mechanism of Cremastra Appendiculata (SUANPANQI) against breast cancer by network pharmacology and molecular docking. Comput Biol Chem 2021;94:107396.
  14. Mohanraj K, Karthikeyan BS, Vivek-Ananth RP, Chand RP, Aparna SR, Mangalapandi P, et al. IMPPAT: a curated database of Indian Medicinal Plants, Phytochemistry And Therapeutics. Sci Rep 2018;8:4329.
  15. Vivek-Ananth RP, Mohanraj K, Sahoo AK, Samal A. IMPPAT 2.0: an enhanced and expanded phytochemical atlas of Indian medicinal plants. ACS Omega 2023;8:8827-8845.
  16. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 2021;49:D1388-D1395. https://doi.org/10.1093/nar/gkaa971
  17. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017;7:42717.
  18. Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 2014;42:W32-W38. https://doi.org/10.1093/nar/gku293
  19. UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 2021;49:D480-D489. https://doi.org/10.1093/nar/gkaa1100
  20. Rappaport N, Nativ N, Stelzer G, Twik M, Guan-Golan Y, Stein TI, et al. MalaCards: an integrated compendium for diseases and their annotation. Database (Oxford) 2013;2013:bat018.
  21. Pathan M, Keerthikumar S, Ang CS, Gangoda L, Quek CY, Williamson NA, et al. FunRich: an open access standalone functional enrichment and interaction network analysis tool. Proteomics 2015;15:2597-2601. https://doi.org/10.1002/pmic.201400515
  22. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498-2504. https://doi.org/10.1101/gr.1239303
  23. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res 2022;50:W216-W221. https://doi.org/10.1093/nar/gkac194
  24. Huang Da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44-57. https://doi.org/10.1038/nprot.2008.211
  25. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;47: D607-D613. https://doi.org/10.1093/nar/gky1131
  26. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021;49:D605-D612. https://doi.org/10.1093/nar/gkaa1074
  27. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res 2000;28:235-242. https://doi.org/10.1093/nar/28.1.235
  28. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 1997;18:2714-2723. https://doi.org/10.1002/elps.1150181505
  29. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 2009;30:2785-2791. https://doi.org/10.1002/jcc.21256
  30. Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc 2016;11:905-919. https://doi.org/10.1038/nprot.2016.051
  31. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: an open chemical toolbox. J Cheminform 2011;3:33.
  32. Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 2018;46:W363-W367. https://doi.org/10.1093/nar/gky473
  33. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455-461. https://doi.org/10.1002/jcc.21334
  34. The PyMOL Molecular Graphics System. New York: Schrodinger, 2022. Accessed 2022 Sep 13. Available from: https://pymol.org/2/.
  35. BIOVIA. Discovery Studio Visualizer. San Diego, CA: Dassault Systemes, 2021.
  36. Chandran U, Mehendale N, Patil S, Chaguturu R, Patwardhan B. Network pharmacology. Innov Approaches Drug Discov 2017;127-164.
  37. Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 2011;7:146-157. https://doi.org/10.2174/157340911795677602
  38. Didiasova M, Wujak L, Wygrecka M, Zakrzewicz D. From plasminogen to plasmin: role of plasminogen receptors in human cancer. Int J Mol Sci 2014;15:21229-21252. https://doi.org/10.3390/ijms151121229
  39. Ji HL, Zhao R, Matalon S, Matthay MA. Elevated plasmin(ogen) as a common risk factor for COVID-19 susceptibility. Physiol Rev 2020;100:1065-1075.
  40. Medcalf RL, Keragala CB, Myles PS. Fibrinolysis and COVID-19: a plasmin paradox. J Thromb Haemost 2020;18:2118-2122. https://doi.org/10.1111/jth.14960
  41. Wu Y, Wang T, Guo C, Zhang D, Ge X, Huang Z, et al. Plasminogen improves lung lesions and hypoxemia in patients with COVID-19. QJM 2020;113:539-545. https://doi.org/10.1093/qjmed/hcaa121
  42. Della-Morte D, Pacifici F, Ricordi C, Massoud R, Rovella V, Proietti S, et al. Low level of plasminogen increases risk for mortality in COVID-19 patients. Cell Death Dis 2021;12:773.
  43. Wang X, Terzyan S, Tang J, Loy JA, Lin X, Zhang XC. Human plasminogen catalytic domain undergoes an unusual conformational change upon activation. J Mol Biol 2000;295:903-914. https://doi.org/10.1006/jmbi.1999.3397
  44. Wu G, Quek AJ, Caradoc-Davies TT, Ekkel SM, Mazzitelli B, Whisstock JC, et al. Structural studies of plasmin inhibition. Biochem Soc Trans 2019;47:541-557. https://doi.org/10.1042/BST20180211
  45. Cavallo-Medved D, Moin K, Sloane B. Cathepsin B: basis sequence: mouse. AFCS Nat Mol Pages 2011;2011:A000508.
  46. Ding X, Ye N, Qiu M, Guo H, Li J, Zhou X, et al. Cathepsin B is a potential therapeutic target for coronavirus disease 2019 patients with lung adenocarcinoma. Chem Biol Interact 2022;353:109796.
  47. Prasad K, AlOmar SY, Almuqri EA, Rudayni HA, Kumar V. Genomics-guided identification of potential modulators of SARSCoV-2 entry proteases, TMPRSS2 and Cathepsins B/L. PloS One 2021;16:e0256141.
  48. Chitranshi N, Kumar A, Sheriff S, Gupta V, Godinez A, Saks D, et al. Identification of novel cathepsin B inhibitors with implications in Alzheimer's disease: computational refining and biochemical evaluation. Cells 2021;10:1946.
  49. Vidal-Albalat A, Gonzalez FV. Natural products as cathepsin inhibitors. Stud Nat Prod Chem 2016;50:179-213. https://doi.org/10.1016/B978-0-444-63749-9.00006-2
  50. Manoharan S, Perumal E. Potential role of marine bioactive compounds in cancer signaling pathways: a review. Eur J Pharmacol 2022;936:175330.
  51. Tjarnlund-Wolf A, Brogren H, Lo EH, Wang X. Plasminogen activator inhibitor-1 and thrombotic cerebrovascular diseases. Stroke 2012;43:2833-2839. https://doi.org/10.1161/STROKEAHA.111.622217
  52. Zuo Y, Warnock M, Harbaugh A, Yalavarthi S, Gockman K, Zuo M, et al. Plasma tissue plasminogen activator and plasminogen activator inhibitor-1 in hospitalized COVID-19 patients. Sci Rep 2021;11:1580.
  53. Whyte CS, Simpson M, Morrow GB, Wallace CA, Mentzer AJ, Knight JC, et al. The suboptimal fibrinolytic response in COVID-19 is dictated by high PAI-1. J Thromb Haemost 2022;20:2394-2406. https://doi.org/10.1111/jth.15806
  54. Matsuyama T, Kubli SP, Yoshinaga SK, Pfeffer K, Mak TW. An aberrant STAT pathway is central to COVID-19. Cell Death Differ 2020;27:3209-3225. https://doi.org/10.1038/s41418-020-00633-7
  55. Yamaoka N, Kawano Y, Izuhara Y, Miyata T, Meguro K. Structure-activity relationships of new 2-acylamino-3-thiophenecarboxylic acid dimers as plasminogen activator inhibitor-1 inhibitors. Chem Pharm Bull (Tokyo) 2010;58:615-619. https://doi.org/10.1248/cpb.58.615
  56. Gimenez-Bastida JA, Martinez-Florensa M, Espin JC, Tomas-Barberan FA, Garcia-Conesa MT. A citrus extract containing flavanones represses plasminogen activator inhibitor-1 (PAI-1) expression and regulates multiple inflammatory, tissue repair, and fibrosis genes in human colon fibroblasts. J Agric Food Chem 2009;57:9305-9315. https://doi.org/10.1021/jf901983g
  57. Kimura Y, Yokoi K, Matsushita N, Okuda H. Effects of flavonoids isolated from scutellariae radix on the production of tissue-type plasminogen activator and plasminogen activator inhibitor-1 induced by thrombin and thrombin receptor agonist peptide in cultured human umbilical vein endothelial cells. J Pharm Pharmacol 1997;49:816-822. https://doi.org/10.1111/j.2042-7158.1997.tb06119.x