DOI QR코드

DOI QR Code

Suppression and stability analysis of frequency coupling effect in grid-connected inverters

  • Xiaohuan Wang (Department of Electrical Engineering, Yanshan University) ;
  • Aihua Yang (Department of Electrical Engineering, Yanshan University) ;
  • Yang Liu (Department of Electrical Engineering, Yanshan University) ;
  • Xiaojun Zhao (Department of Electrical Engineering, Yanshan University)
  • Received : 2022.07.05
  • Accepted : 2023.01.05
  • Published : 2023.06.20

Abstract

With the proposal of the "dual carbon target" in China, the rapid development of renewable energy, mainly photovoltaic and wind power, has been promoted. However, a large amount of renewable energy connected to a grid results in its proportion in the power system going from a low state to a high state. Under a high proportion, the asymmetry of the control structure or parameters in the three-phase grid-connected inverter controller lead to a strong coupling relationship between the sub/super synchronous frequency components, or frequency coupling effect (FCE). This phenomenon can deteriorate the power quality of the inverter system, amplify the harm of frequency oscillation, and even cause system disassembly. To solve the above problems, a unified impedance model considering the FCE induced by the phase-locked loop (PLL), the current loop (CL), and the power outer loop (POL) is established. Based on the established output impedance model, a parameter optimization theoretical analysis method is designed considering the critical stability of the PLL bandwidth and the CL asymmetry degree. Meanwhile, an improved control strategy for the PLL and the POL is proposed. Experimental results show that the proposed parameter optimization and structure improvement strategies can effectively suppress the influence of frequency coupling and enhance system stability. Finally, simulation and experimental results verify the correctness of the theoretical analysis and the effectiveness of the proposed strategy.

Keywords

Acknowledgement

This research was supported by the National Natural Science Foundation of China (NSFC) (Fund Number: 52077191, 62003297).

References

  1. Xie, X.R., He, J.B., Mao, H.Y., Li, H.Z.: New issues and classification of power system stability with high shares of renewables and power electronics. Proc. CSEE. 41(02), 461-475 (2021)
  2. Zhang, X., Xia, D., Fu, Z., Wang, G., Xu, D.: An improved feedforward control method considering PLL dynamics to improve weak grid stability of grid-connected inverters. IEEE Trans. Ind. Appl. 54(5), 5143-5151 (2018) https://doi.org/10.1109/TIA.2018.2811718
  3. Sun, H.D., Xu, T., Guo, Q., Li, Y.L., et al.: Analysis on blackout in great Britain power grid on August 9th, 2019 and its enlightenment to power grid in China. Proc. CSEE. 39(21), 6183-6192 (2019)
  4. Li, M.J., Yu, Z., Xu, T., He, J.B., Wang, C., Xie, X.R., Liu, C.: Study of complex oscillation caused by renewable energy integration and its solution. Power Grid Technol. 41(04), 1035-1042 (2017)
  5. Ma, N.N., Xie, X.R., He, J.B., Wang, H.: Review of wide-band oscillation in renewable and power electronics highly integrated power systems. Proc. CSEE. 40(15), 4720-4732 (2020)
  6. Sun, J., Li, M.J., Zhang, Z.G., Xu, T., He, J.B., Wang, H.J., Li, G.H.: Renewable energy transmission by HVDC across the continent: system challenges and opportunities. CSEE J. Power Energy Syst. 3(4), 353-364 (2017) https://doi.org/10.17775/CSEEJPES.2017.01200
  7. Xie, X.R., Liu, H.K., He, J.B., Zhang, C.Y., Qiao, Y.: Mechanism and characteristics of subsynchronous oscillation caused by the interaction between full-converter wind turbines and AC systems. Proc. CSEE. 36(9), 2366-2372 (2016)
  8. Du, C.M., Du, X., Zou, X.M., Tang, J.C.: Impedance modeling and stability analysis of grid-connected modular multilevel converter considering frequency coupling efect. Proc. CSEE. 40(09), 2866-2877 (2020)
  9. Rygg, A., Molinas, M., Zhang, C., Cai, X.: A modified sequence-domain impedance definition and its equivalence to the dq-domain impedance definition for the stability analysis of AC power electronic systems. IEEE J. Emerg. Sel. Topics Power Electron. 4(4), 1383-1396 (2016) https://doi.org/10.1109/JESTPE.2016.2588733
  10. Bakhshizadeh, M.K., Wang, F.X., Blaabjerg, F., Hjerrild, J., Kocewiak, L, Bak, C.L., Hesselbek, B.: Couplings in phase domain impedance modelling of grid-connected converters. IEEE Trans. Power Electron. 31(10), 6792-6796 (2016)
  11. Liu, W., Xie, X.R., Huang, J.K., Zhang, C.Y., Yin, C.Q.: Frequency-coupled impedance model and stability analysis of grid-connected converter. Autom. Electr. Power Syst. 43(03), 138-146 (2019)
  12. Nian, H., Xu, Y.Y., Chen, L., Li, G.H.: Frequency coupling characteristic modeling of grid-connected inverter and system stability analysis. Proc. CSEE. 39(05), 1421-1432 (2019)
  13. Harnefors, L., Bongiorno, M., Lundberg, S.: Input-admittance calculation and shaping for controlled voltage-source converters. IEEE Trans. Industr. Electron. 54(6), 3323-3334 (2007) https://doi.org/10.1109/TIE.2007.904022
  14. Wu, C., Hu, B., Cheng, P., Nian, H., Blaabjerg, F.: Eliminating Frequency Coupling of DFIG System Using a Complex Vector PLL. 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), 3262-3266 (2020)
  15. Cespedes, M., Sun, J.: Impedance shaping of three-phase grid-parallel voltage-source converters. in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 754-760 (2012)
  16. Wu, X.Q., Wang, Y.C., Chen, X., Chen, J., et al.: Sequence impedance model and interaction stability research of three-phase grid-connected inverters with considering coupling effects. Proc CSEE. 40(05), 1605-1617 (2020)
  17. Wu, W.H., Zhou, L.M., Chen, Y.D., Luo, A., et al.: Stability comparison and analysis between the virtual synchronous generator and the traditional grid-connected inverter in the view of sequence impedance. Proc CSEE. 39(05), 1411-1421 (2019)
  18. Kazem Bakhshizadeh, M., et al.: Couplings in phase domain impedance modeling of grid-connected converters. IEEE Trans. Power Electron. 31(10), 6792-6796 (2016)
  19. Wen, B., Boroyevich, D., Mattavelli, P., Shen, Z. Y., Burgos, R.: Influence of phase-locked loop on input admittance of three-phase voltage-source converters. 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 897-904 (2013)
  20. Chen, X., Wang, Y.C., Gong, C.Y., Sun, J., et al.: Overview of stability research for grid-connected inverters based on impedance analysis method. Proc. CSEE. 38(07), 2082-2094+2223 (2018)