• Title/Summary/Keyword: Frequency coupling effect

Search Result 196, Processing Time 0.029 seconds

Analysis on the Measured Natural Frequencies Due to the Structure-Exciter Interaction (구조물-가진기 상호작용에 의한 공진주파수 변동에 대한 해석)

  • Han, Sang-Bo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2108-2117
    • /
    • 1996
  • The purpose of this paper is to investigate the influence of the exciter attached for the measurement of natural frequencies when extracting the frequency response functions of the test structure in experimental modal analysis. The procedure is first to model the attached exciter as an additional degree of freedom system and next to verify the suggested model by experimentally extracting the natural frequencies of the test structure with various values of exciter mass, stinger stiffness and attachment position of the exciter on the test structure. It is concluded that as additional degree of freedom system which includes the natural frequency of the exciter itself and axial stiffness of stinger should be considered to quantatively define the coupling effects of structure-exciter interaction on the measured natural frequencies. It is not the mass of the exciter itself but the coupling effect of the additional degree of freedom mass-spring system consisting of exciter body and armature coil that characterizes the natural frequency deviation. Therefore, when the natural frequency of this additional mass-spring system is outside of the test frequency range, the coupling effect of structure-exciter interaction can be minimized.

Influence of Frequency Separation on Modal Coupling in Nonclassically Damped Systems (비고전적 감쇠시스템에서 주파수분리의 모드연관에 대한 영향)

  • 김정수;최기흥;최기상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2245-2250
    • /
    • 1994
  • The normal coordinates of a nonclassically damped systems are coupled by nonzero off-diagonal elements of modal damping matrix. The relationship between modal coupling and the frequency separation of the natural modes is presented in this paper. Contrary to widely accepted beliefs, increasing the frequency separation of the natural modes does not neccessarily diminish the effect of modal coupling. Consequently, in the pratical engineering applications, wide frequency separation of the natural modes would not be sufficient for neglecting modal coupling.

Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect (연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석)

  • Lim, Ha-Seong;Kwon, Sung-Hun;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.912-918
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect (연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석)

  • Lim, Ha-Seong;Kwon, Sung-Hun;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1354-1359
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

  • PDF

A Study on the Modal Characteristics of the Vibration-Acoustic Coupled System (진동-음향 연성계의 모드특성에 대한 연구)

  • Kim, Seock-Hyun
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.239-245
    • /
    • 1996
  • Modal parameters determine the frequency response characteristics of vibration system or acoustic system. When the two systems are fully coupled, however, coupling changes the vibrational and acoustic model parameters into those of the coupled system. In this case, it is very difficult to obtain the modified model parameters and response characteristics. In this paper, coupling effect is analytically investigated on the natural frequency, mode and frequency response characteristics. The result can be applied to understand and to design the frequency response characteristics of the vehicle passenger compartment.

  • PDF

Study on the Thermal Transient Response of TSV Considering the Effect of Electronic-Thermal Coupling

  • Li, Chunquan;Zou, Meng-Qiang;Shang, Yuling;Zhang, Ming
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.356-364
    • /
    • 2015
  • The transmission performance of TSV considering the effect of electronic-thermal coupling is an new challenge in three dimension integrated circuit. This paper presents the thermal equivalent circuit (TEC) model of the TSV, and discussed the thermal equivalent parameters for TSV. Si layer is equivalent to transmission line according to its thermal characteristic. Thermal transient response (TTR) of TSV considering electronic-thermal coupling effects are proposed, iteration flow electronic-thermal coupling for TSV is analyzed. Furthermore, the influences of TTR are investigated with the non-coupling and considering coupling for TSV. Finally, the relationship among temperature, thickness of $SiO_2$, radius of via and frequency of excitation source are addressed, which are verified by the simulation.

Range estimation of underwater vehicles using superimposed chirp signals (중첩된 처프 신호를 이용한 수중 이동체의 거리 추정)

  • Hyung-in Ra;Kyung-won Lee;Chang-hyun Youn;Ki-man Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.511-518
    • /
    • 2023
  • Accurate ranging is one of the key factors in the test and evaluation process of underwater vehicles. In particular, when estimating range using Time of Arrival (ToA) values, signals such as Linear Frequency Modulation (LFM), a chirp signal, are highly applicable due to their correlated nature. However, in a Doppler shift environment with mobility, measurement errors may occur due to the range-Doppler coupling effect. In this paper, we propose a signal that compensates for the distance-Doppler coupling effect to reduce the measurement error of the arrival time value. The proposed signal is constructed by superimposing two types of LFM signals, and the range-Doppler coupling effect can be minimized. Through simulations, it is confirmed that the proposed signal is a way to compensate for the distance-Doppler coupling effect in the distance estimation of underwater mobile bodies, reducing the measurement error of the arrival time value.

Effect of Calcining Temperature on Planr Coupling Factor and Resonance Characteristics of PZT (하소온도가 PZT의 Kp와 공진특성에 미치는 영향)

  • 정수태;이우일;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.1
    • /
    • pp.47-52
    • /
    • 1985
  • The effect of calcining temperature on planar coupling factor Kp resonance and antiresonance frequency of $Pb(Z_{0.53}Ti_{0.47})O_3$ doped with $Nb_2O_5$ has been investigated. The calcining temperature ranged from $700^{\circ}C$ to 110$0^{\circ}C$ The calcining temperature affected on antiresonance frequency more strongly than the resonance frequency. Therefore the Kp was almost entirely dependent upon the antiresonance frequency. The p and antiresonance frequency of the sample in creased with the calcining temperature reaching a maximum at about 90$0^{\circ}C$ When a poling electric field of 35KV/cm was applied to the sample calcined at 90$0^{\circ}C$ and sintered for two hours at 120$0^{\circ}C$ Kp attained a maximum value of 0.64 which is in good agreement with the results of other investigators.

  • PDF

The Natural Frequency of a Coaxial Cylindrical Shell with Fluid Coupling (유체 연성이 작용하는 동축 원통형 쉘의 고유진동)

  • 안병준;정경훈;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.975-979
    • /
    • 1994
  • The experimental and finite element studies of a coaxial cylindrical shell filled with liquid in the annular gap were performed to understand its vibration characteristics. Finite element analysis was achieved by using ANSYS code. Form the investigation of the changing trend of natural frequencies for the change of annular gap we know that the natural frequency of the coaxial cylindrical shell varies according to the mode shape. that is, in case of in-phase mode the natural frequency decrease as annular gap increase, but in case of out-of-phase mode the natural frequency increase. Finite element analysis results show the excellent agreement with the experimental results both in air and in water case, so that analysis on other cases with be possible without experiment.

  • PDF

Fatigue life evolution of steel wire considering corrosion-fatigue coupling effect: Analytical model and application

  • Yang Ding;Xiao-Wei Ye;Hong Zhang;Xue-Song Zhang
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.363-374
    • /
    • 2024
  • The fatigue life of steel wire is affected not only by fatigue load, but also by corrosion environment in service period. Specially, the corrosion pit will lead to stress concentration on the surface of steel wire inducing the formation of fatigue cracks, and the fatigue cracks will accelerate the corrosion process. Therefore, the corrosion fatigue of steel wire is a coupling effect. In this study, the corrosion-fatigue coupling life curve is derived with considering corrosion-fatigue pitting stage, corrosion-fatigue short crack stage and corrosion-fatigue long crack stage. In addition, the stress concentration factors of different corrosion pits are calculated by COMSOL software. Furthermore, the effect of corrosion environment factors, that is, corrosion rate, corrosion pit morphology, frequency and action factor of fatigue load, on fatigue life of steel wire is analyzed. And then, the corrosion-fatigue coupling life curve is compared with the fatigue life curve and fatigue life curve with pre-corrosion. The result showed that the anti-fatigue performance of the steel wire with considering corrosion-fatigue coupling is 68.08% and 41.79% lower than fatigue life curve and fatigue life curve with pre-corrosion. Therefore, the corrosion-fatigue coupling effect should be considered in the design of steel wire.