DOI QR코드

DOI QR Code

Analyzing Gut Microbial Community in Varroa destructor-Infested Western Honeybee (Apis mellifera)

  • Minji Kim (Department of Biology, Jeju National University) ;
  • Woo Jae Kim (Center for Life Science (HCLS), Harbin Institute of Technology) ;
  • Soo-Je Park (Department of Biology, Jeju National University)
  • Received : 2023.06.22
  • Accepted : 2023.07.17
  • Published : 2023.11.28

Abstract

The western honeybee Apis mellifera L., a vital crop pollinator and producer of honey and royal jelly, faces numerous threats including diseases, chemicals, and mite infestations, causing widespread concern. While extensive research has explored the link between gut microbiota and their hosts. However, the impact of Varroa destructor infestation remains understudied. In this study, we employed massive parallel amplicon sequencing assays to examine the diversity and structure of gut microbial communities in adult bee groups, comparing healthy (NG) and Varroa-infested (VG) samples. Additionally, we analyzed Varroa-infested hives to assess the whole body of larvae. Our results indicated a notable prevalence of the genus Bombella in larvae and the genera Gillamella, unidentified Lactobacillaceae, and Snodgrassella in adult bees. However, no statistically significant difference was observed between NG and VG. Furthermore, our PICRUSt analysis demonstrated distinct KEGG classification patterns between larval and adult bee groups, with larvae displaying a higher abundance of genes involved in cofactor and vitamin production. Notably, despite the complex nature of the honeybee bacterial community, methanogens were found to be present in low abundance in the honeybee microbiota.

Keywords

Acknowledgement

We are grateful to Greenbees Co. (http://greenbees.kr/), located on Jeju Island, for providing us with honeybee samples and for engaging us in fruitful conversations about the effects of Varroa infection.

References

  1. Liang D, Leung RK, Guan W, Au WW. 2018. Involvement of gut microbiome in human health and disease: brief overview, knowledge gaps and research opportunities. Gut Pathog. 10: 3.
  2. Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. 2020. Plant-microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18: 607-621. https://doi.org/10.1038/s41579-020-0412-1
  3. Groussin M, Mazel F, Alm EJ. 2020. Co-evolution and Co-speciation of host-gut bacteria systems. Cell Host Microbe 28: 12-22. https://doi.org/10.1016/j.chom.2020.06.013
  4. Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, et al. 2007. Importance of pollinators in changing landscapes for world crops. Proc. Royal Soc. B-Biol. Sci. 274: 303-313. https://doi.org/10.1098/rspb.2006.3721
  5. Council NR. 2007. Status of Pollinators in North America. The National Academies Press, Washington, DC.
  6. Cornelissen B, Neumann P, Schweiger O. 2019. Global warming promotes biological invasion of a honey bee pest. Glob. Chang. Biol. 25: 3642-3655. https://doi.org/10.1111/gcb.14791
  7. Barron AB. 2015. Death of the bee hive: understanding the failure of an insect society. Curr. Opin. Insect Sci. 10: 45-50. https://doi.org/10.1016/j.cois.2015.04.004
  8. Alburaki M, Chen D, Skinner JA, Meikle WG, Tarpy DR, Adamczyk J, et al. 2018. Honey bee survival and pathogen prevalence: from the perspective of landscape and exposure to pesticides. Insects 9: 65.
  9. Goulson D, Nicholls E, Botias C, Rotheray EL. 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347: 1255957.
  10. Colin T, Meikle WG, Paten AM, Barron AB. 2019. Long-term dynamics of honey bee colonies following exposure to chemical stress. Sci. Total Environ. 677: 660-670. https://doi.org/10.1016/j.scitotenv.2019.04.402
  11. Traynor KS, Mondet F, de Miranda JR, Techer M, Kowallik V, Oddie MAY, et al. 2020. Varroa destructor: a complex parasite, crippling honey bees worldwide. Trends Parasitol. 36: 592-606. https://doi.org/10.1016/j.pt.2020.04.004
  12. Klee J, Besana AM, Genersch E, Gisder S, Nanetti A, Tam DQ, et al. 2007. Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J. Invertebr. Pathol. 96: 1-10. https://doi.org/10.1016/j.jip.2007.02.014
  13. Genersch E, Aubert M. 2010. Emerging and re-emerging viruses of the honey bee (Apis mellifera L.). Vet. Res. 41: 54.
  14. Li JL, Cornman RS, Evans JD, Pettis JS, Zhao Y, Murphy C, et al. 2014. Systemic spread and propagation of a plant-pathogenic virus in European honeybees, Apis mellifera. mBio 5: e00898-00813.
  15. Dainat B, Neumann P. 2013. Clinical signs of deformed wing virus infection are predictive markers for honey bee colony losses. J. Invertebr. Pathol. 112: 278-280. https://doi.org/10.1016/j.jip.2012.12.009
  16. Bulson L, Becher MA, McKinley TJ, Wilfert L. 2021. Long-term effects of antibiotic treatments on honeybee colony fitness: a modelling approach. J. Appl. Ecol. 58: 70-79. https://doi.org/10.1111/1365-2664.13786
  17. Raymann K, Shaffer Z, Moran NA. 2017. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 15: e2001861.
  18. Wang K, Li J, Zhao L, Mu X, Wang C, Wang M, et al. 2021. Gut microbiota protects honey bees (Apis mellifera L.) against polystyrene microplastics exposure risks. J. Hazard. Mater. 402: 123828.
  19. Soares KO, de Oliveira CJB, Rodrigues AE, Vasconcelos PC, da Silva NMV, da Cunha OG, et al. 2021. Tetracycline exposure alters key gut microbiota in Africanized honey bees (Apis mellifera scutellata x spp.). Front. Ecol. Evol. 9. https://doi.org/10.3389/ fevo.2021.716660.
  20. Wells V, Piddock LJV. 2017. Addressing antimicrobial resistance in the UK and Europe. Lancet Infect. Dis. 17: 1230-1231. https://doi.org/10.1016/S1473-3099(17)30633-3
  21. Forsgren E, Locke B, Sircoulomb F, Schafer MO. 2018. Bacterial diseases in honeybees. Curr. Clin. Microbiol. Rep. 5: 18-25. https://doi.org/10.1007/s40588-018-0083-0
  22. Arredondo D, Castelli L, Porrini MP, Garrido PM, Eguaras MJ, Zunino P, et al. 2018. Lactobacillus kunkeei strains decreased the infection by honey bee pathogens Paenibacillus larvae and Nosema ceranae. Benef. Microbes 9: 279-290. https://doi.org/10.3920/BM2017.0075
  23. Chmiel JA, Daisley BA, Pitek AP, Thompson GJ, Reid G. 2020. Understanding the effects of sublethal pesticide exposure on honey bees: a role for probiotics as mediators of environmental stress. Front. Ecol. Evol. 8. doi.org/10.3389/fevo.2020.00022.
  24. Mudronova D, Toporcak J, Nemcova R, Gancarcikova S, Hajduckova V, Rumanovska K. 2011. Lactobacillus sp. as a potential probiotic for the prevention of Paenibacillus larvae infection in honey bees. J. Apic. Res. 50: 323-324. https://doi.org/10.3896/IBRA.1.50.4.11
  25. Daisley BA, Pitek AP, Chmiel JA, Gibbons S, Chernyshova AM, Al KF, et al. 2020. Lactobacillus spp. attenuate antibiotic-induced immune and microbiota dysregulation in honey bees. Commun. Biol. 3: 534.
  26. Kaznowski A, Szymas B, Jazdzinska E, Kazimierczak M, Paetz H, Mokracka J. 2005. The effects of probiotic supplementation on the content of intestinal microflora and chemical composition of worker honey bees (Apis mellifera). J. Apic. Res. 44: 10-14. https://doi.org/10.1080/00218839.2005.11101139
  27. Alberoni D, Baffoni L, Gaggia F, Ryan PM, Murphy K, Ross PR, et al. 2018. Impact of beneficial bacteria supplementation on the gut microbiota, colony development and productivity of Apis mellifera L. Benef. Microbes 9: 269-278. https://doi.org/10.3920/BM2017.0061
  28. Audisio MC, Benitez-Ahrendts MR. 2011. Lactobacillus johnsonii CRL1647, isolated from Apis mellifera L. bee-gut, exhibited a beneficial effect on honeybee colonies. Benef. Microbes 2: 29-34. https://doi.org/10.3920/BM2010.0024
  29. Engel P, Bartlett KD, Moran NA. 2015. The Bacterium Frischella perrara causes scab formation in the gut of its honeybee host. mBio 6: e00193-00115.
  30. Ye MH, Fan SH, Li XY, Tarequl IM, Yan CX, Wei WH, et al. 2021. Microbiota dysbiosis in honeybee (Apis mellifera L.) larvae infected with brood diseases and foraging bees exposed to agrochemicals. R. Soc. Open Sci. 8: 201805.
  31. Paris L, Peghaire E, Mone A, Diogon M, Debroas D, Delbac F, et al. 2020. Honeybee gut microbiota dysbiosis in pesticide/parasite coexposures is mainly induced by Nosema ceranae. J. Invertebr. Pathol. 172: 107348.
  32. Kesnerova L, Emery O, Troilo M, Liberti J, Erkosar B, Engel P. 2020. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 14: 801-814. https://doi.org/10.1038/s41396-019-0568-8
  33. Pakwan C, Kaltenpoth M, Weiss B, Chantawannakul P, Jun G, Disayathanoowat T. 2017. Bacterial communities associated with the ectoparasitic mites Varroa destructor and Tropilaelaps mercedesae of the honey bee (Apis mellifera). FEMS Microbiol. Ecol. 93. doi: 10.1093/femsec/fix160.
  34. Hubert J, Erban T, Kamler M, Kopecky J, Nesvorna M, Hejdankova S, et al. 2015. Bacteria detected in the honeybee parasitic mite Varroa destructor collected from beehive winter debris. J. Appl. Microbiol. 119: 640-654. https://doi.org/10.1111/jam.12899
  35. Hubert J, Bicianova M, Ledvinka O, Kamler M, Lester PJ, Nesvorna M, et al. 2017. Changes in the bacteriome of honey bees associated with the parasite Varroa destructor, and pathogens Nosema and Lotmaria passim. Microb. Ecol. 73: 685-698. https://doi.org/10.1007/s00248-016-0869-7
  36. Hubert J, Kamler M, Nesvorna M, Ledvinka O, Kopecky J, Erban T. 2016. Comparison of Varroa destructor and worker honeybee microbiota within hives indicates shared bacteria. Microb. Ecol. 72: 448-459. https://doi.org/10.1007/s00248-016-0776-y
  37. Marche MG, Satta A, Floris I, Pusceddu M, Buffa F, Ruiu L. 2019. Quantitative variation in the core bacterial community associated with honey bees from Varroa-infested colonies. J. Apic. Res. 58: 444-454. https://doi.org/10.1080/00218839.2019.1589669
  38. Park SJ, Andrei AS, Bulzu PA, Kavagutti VS, Ghai R, Mosier AC. 2020. Expanded diversity and metabolic versatility of marine nitriteoxidizing bacteria revealed by cultivation- and genomics-based approaches. Appl. Environ. Microbiol. 86: e01667-20.
  39. Kim YS, Kim J, Park SJ. 2015. High-throughput 16S rRNA gene sequencing reveals alterations of mouse intestinal microbiota after radiotherapy. Anaerobe 33: 1-7. https://doi.org/10.1016/j.anaerobe.2015.01.004
  40. Schloss PD. 2020. Reintroducing mothur: 10 years later. Appl. Environ. Microbiol. 86: e02343-19.
  41. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platformindependent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09
  42. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. 2012. Ultra-high-throughput microbial community analysis on the illumina HiSeq and MiSeq platforms. ISME J. 6: 1621-1624. https://doi.org/10.1038/ismej.2012.8
  43. Dong Z-X, Li H-Y, Chen Y-F, Wang F, Deng X-Y, Lin L-B, et al. 2020. Colonization of the gut microbiota of honey bee (Apis mellifera) workers at different developmental stages. Microbiol. Res. 231: 126370.
  44. Sender R, Fuchs S, Milo R. 2016. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14: e1002533.
  45. Engel P, Kwong WK, McFrederick Q, Anderson KE, Barribeau SM, Chandler JA, et al. 2016. The bee microbiome: impact on bee health and model for evolution and ecology of host-microbe interactions. mBio 7: e02164-02115.
  46. Kwong WK, Moran NA. 2016. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14: 374-384. https://doi.org/10.1038/nrmicro.2016.43
  47. Ahn JH, Hong IP, Bok JI, Kim BY, Song J, Weon HY. 2012. Pyrosequencing analysis of the bacterial communities in the guts of honey bees Apis cerana and Apis mellifera in Korea. J. Microbiol. 50: 735-745. https://doi.org/10.1007/s12275-012-2188-0
  48. Dong ZX, Chen YF, Li HY, Tang QH, Guo J. 2021. The succession of the gut microbiota in insects: a dynamic alteration of the gut microbiota during the whole life cycle of honey bees (Apis cerana). Front. Microbiol. 12: 513962.
  49. Wang H, Liu C, Liu Z, Wang Y, Ma L, Xu B. 2020. The different dietary sugars modulate the composition of the gut microbiota in honeybee during overwintering. BMC Microbiol. 20: 61.
  50. Yun JH, Jung MJ, Kim PS, Bae JW. 2018. Social status shapes the bacterial and fungal gut communities of the honey bee. Sci. Rep. 8: 2019.
  51. Hroncova Z, Killer J, Hakl J, Titera D, Havlik J. 2019. In-hive variation of the gut microbial composition of honey bee larvae and pupae from the same oviposition time. BMC Microbiol. 19: 110.
  52. Barb JJ, Oler AJ, Kim HS, Chalmers N, Wallen GR, Cashion A, et al. 2016. Development of an analysis pipeline characterizing multiple hypervariable regions of 16S rRNA using mock samples. PLoS One 11: e0148047.
  53. Engel P, Moran NA. 2013. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol. Rev. 37: 699-735. https://doi.org/10.1111/1574-6976.12025
  54. Wexler HM. 2007. Bacteroides: the good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20: 593-621. https://doi.org/10.1128/CMR.00008-07
  55. White BA, Lamed R, Bayer EA, Flint HJ. 2014. Biomass utilization by gut microbiomes. Annu. Rev. Microbiol. 68: 279-296. https://doi.org/10.1146/annurev-micro-092412-155618
  56. Magnusdottir S, Ravcheev D, de Crecy-Lagard V, Thiele I. 2015. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front. Genet. 6: 148.
  57. Li L, Praet J, Borremans W, Nunes OC, Manaia CM, Cleenwerck I, et al. 2015. Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop. Int. J. Syst. Evol. Microbiol. 65: 267-273. https://doi.org/10.1099/ijs.0.068049-0
  58. Yun JH, Lee JY, Hyun DW, Jung MJ, Bae JW. 2017. Bombella apis sp. nov., an acetic acid bacterium isolated from the midgut of a honey bee. Int. J. Syst. Evol. Microbiol. 67: 2184-2188.  https://doi.org/10.1099/ijsem.0.001921
  59. Hilgarth M, Redwitz J, Ehrmann MA, Vogel RF, Jakob F. 2021. Bombella favorum sp. nov. and Bombella mellum sp. nov., two novel species isolated from the honeycombs of Apis mellifera. Int. J. Syst. Evol. Microbiol. 71. doi: 10.1099/ijsem.0.004633. 
  60. Corby-Harris V, Snyder LA, Schwan MR, Maes P, McFrederick QS, Anderson KE. 2014. Origin and effect of Alpha 2.2 Acetobacteraceae in honey bee larvae and description of Parasaccharibacter apium gen. nov., sp. nov. Appl. Environ. Microbiol. 80: 7460-7472. https://doi.org/10.1128/AEM.02043-14
  61. Li L, Illeghems K, Van Kerrebroeck S, Borremans W, Cleenwerck I, Smagghe G, et al. 2016. Whole-genome sequence analysis of Bombella intestini LMG 28161T , a novel acetic acid bacterium isolated from the crop of a red-tailed bumble bee, Bombus lapidarius. PLoS One 11: e0165611.
  62. Smith EA, Newton ILG. 2020. Genomic signatures of honey bee association in an acetic acid symbiont. Genome Biol. Evol. 12: 1882-1894. https://doi.org/10.1093/gbe/evaa183
  63. Downes J, Dewhirst FE, Tanner ACR, Wade WG. 2013. Description of Alloprevotella rava gen. nov., sp. nov., isolated from the human oral cavity, and reclassification of Prevotella tannerae Moore et al. 1994 as Alloprevotella tannerae gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 63: 1214-1218. https://doi.org/10.1099/ijs.0.041376-0
  64. Cryan JF, O'Riordan KJ, Sandhu K, Peterson V, Dinan TG. 2020. The gut microbiome in neurological disorders. Lancet Neurol. 19: 179-194. https://doi.org/10.1016/S1474-4422(19)30356-4
  65. Zheng DP, Liwinski T, Elinav E. 2020. Interaction between microbiota and immunity in health and disease. Cell Res. 30: 492-506. https://doi.org/10.1038/s41422-020-0332-7
  66. Precup G, Vodnar DC. 2019. Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: a comprehensive literature review. Br. J. Nutr. 122: 131-140. https://doi.org/10.1017/S0007114519000680
  67. Schmickl T, Blaschon B, Gurmann B, Crailsheim K. 2003. Collective and individual nursing investment in the queen and in young and old honeybee larvae during foraging and non-foraging periods. Insectes Soc. 50: 174-184. https://doi.org/10.1007/s00040-003-0644-x
  68. Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran NA. 2011. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20: 619-628. https://doi.org/10.1111/j.1365-294X.2010.04959.x
  69. Kwong WK, Engel P, Koch H, Moran NA. 2014. Genomics and host specialization of honey bee and bumble bee gut symbionts. Proc. Natl. Acad. Sci. USA 111: 11509-11514. https://doi.org/10.1073/pnas.1405838111
  70. Zheng H, Steele MI, Leonard SP, Motta EVS, Moran NA. 2018. Honey bees as models for gut microbiota research. Lab. Anim. 47: 317-325. https://doi.org/10.1038/s41684-018-0173-x
  71. Zheng H, Perreau J, Powell JE, Han B, Zhang Z, Kwong WK, et al. 2019. Division of labor in honey bee gut microbiota for plant polysaccharide digestion. Proc. Natl. Acad. Sci. USA 116: 25909-25916. https://doi.org/10.1073/pnas.1916224116
  72. Kesnerova L, Mars RAT, Ellegaard KM, Troilo M, Sauer U, Engel P. 2017. Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biol. 15: e2003467.
  73. Mathipa MG, Thantsha MS. 2017. Probiotic engineering: towards development of robust probiotic strains with enhanced functional properties and for targeted control of enteric pathogens. Gut Pathog. 9: 28.
  74. Callegari M, Crotti E, Fusi M, Marasco R, Gonella E, De Noni I, et al. 2021. Compartmentalization of bacterial and fungal microbiomes in the gut of adult honeybees. NPJ Biofilms Microbiomes. 7: 42.
  75. Hirano S, Matsumoto N, Morita M, Sasaki K, Ohmura N. 2013. Electrochemical control of redox potential affects methanogenesis of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus. Lett. Appl. Microbiol. 56: 315-321. https://doi.org/10.1111/lam.12059
  76. Million M, Tidjani Alou M, Khelaifia S, Bachar D, Lagier JC, Dione N, et al. 2016. Increased gut redox and depletion of anaerobic and methanogenic prokaryotes in severe acute malnutrition. Sci. Rep. 6: 26051.
  77. Gurung K, Wertheim B, Salles JF. 2019. The microbiome of pest insects: it is not just bacteria. Entomol. Exp. Appl. 167: 156-170. https://doi.org/10.1111/eea.12768
  78. Katsnelson A. 2015. Microbiome: the puzzle in a bee's gut. Nature 521: S56.
  79. Zayed A, Robinson GE. 2012. Understanding the relationship between brain gene expression and social behavior: lessons from the honey bee. Annu. Rev. Genet. 46: 591-615. https://doi.org/10.1146/annurev-genet-110711-155517
  80. Robinson GE, Page RE, Jr., Strambi C, Strambi A. 1989. Hormonal and genetic control of behavioral integration in honey bee colonies. Science 246: 109-112. https://doi.org/10.1126/science.246.4926.109
  81. Page RE, Jr., Peng CY. 2001. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp. Gerontol. 36: 695-711. https://doi.org/10.1016/S0531-5565(00)00236-9
  82. Shpigler HY, Saul MC, Corona F, Block L, Cash Ahmed A, Zhao SD, et al. 2017. Deep evolutionary conservation of autism-related genes. Proc. Natl. Acad. Sci. USA 114: 9653-9658.  https://doi.org/10.1073/pnas.1708127114