DOI QR코드

DOI QR Code

Experiment of proof-of-principle on prompt gamma-positron emission tomography (PG-PET) system for in-vivo dose distribution verification in proton therapy

  • Bo-Wi Cheon (Department of Radiation Convergence Engineering, Yonsei University) ;
  • Hyun Cheol Lee (Nuclear Materials Analysis Team, Korea Institute of Nuclear Nonproliferation and Control) ;
  • Sei Hwan You (Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine) ;
  • Hee Seo (Department of Quantum System Engineering, Jeonbuk National University) ;
  • Chul Hee Min (Department of Radiation Convergence Engineering, Yonsei University) ;
  • Hyun Joon Choi (Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine)
  • 투고 : 2022.10.04
  • 심사 : 2023.03.02
  • 발행 : 2023.06.25

초록

In our previous study, we proposed an integrated PG-PET-based imaging method to increase the prediction accuracy for patient dose distributions. The purpose of the present study is to experimentally validate the feasibility of the PG-PET system. Based on the detector geometry optimized in the previous study, we constructed a dual-head PG-PET system consisting of a 16 × 16 GAGG scintillator and KETEK SiPM arrays, BaSO4 reflectors, and an 8 × 8 parallel-hole tungsten collimator. The performance of this system as equipped with a proof of principle, we measured the PG and positron emission (PE) distributions from a 3 × 6 × 10 cm3 PMMA phantom for a 45 MeV proton beam. The measured depth was about 17 mm and the expected depth was 16 mm in the computation simulation under the same conditions as the measurements. In the comparison result, we can find a 1 mm difference between computation simulation and measurement. In this study, our results show the feasibility of the PG-PET system for in-vivo range verification. However, further study should be followed with the consideration of the typical measurement conditions in the clinic application.

키워드

과제정보

This research was supported by National Research Foundation of Korea (NRF); Ministry of Science, ICT, and Future Planning (2020R1A2C201157613), "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(MOE) (2022RIS-005), and Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (G032579811).

참고문헌

  1. J Applied Clin Med Phys, Choi - Development of a Geant4-based Independent Patient Dose Validation System with an.Pdf, 2019 (n.d.). 
  2. W.P. Levin, H. Kooy, J.S. Loeffler, T.F. DeLaney, Proton beam therapy, Br. J. Cancer 93 (2005) 849-854, https://doi.org/10.1038/sj.bjc.6602754. 
  3. R. Miralbell, A. Lomax, L. Cella, U. Schneider, Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors, Int. J. Radiat. Oncol. Biol. Phys. 54 (2002) 824-829, https://doi.org/10.1016/S0360-3016(02)02982-6. 
  4. K. Otto, Volumetric modulated arc therapy: IMRT in a single gantry arc, Med. Phys 35 (2008) 310-317, https://doi.org/10.1118/1.2818738. 
  5. R.R. Wilson, Radiological use of fast protons, Radiology 47 (1946) 487-491, https://doi.org/10.1148/47.5.487. 
  6. A.C. Knopf, A. Lomax, In vivo proton range verification: a review, Phys. Med. Biol. 58 (2013) 131-160, https://doi.org/10.1088/0031-9155/58/15/R131. 
  7. F. Albertini, E.B. Hug, A.J. Lomax, The influence of the optimization starting conditions on the robustness of intensity-modulated proton therapy plans, Phys. Med. Biol. 55 (2010) 2863-2878, https://doi.org/10.1088/0031-9155/55/10/005. 
  8. H.H. Lin, H.T. Chang, T.C. Chao, K.S. Chuang, A comparison of two prompt gamma imaging techniques with collimator-based cameras for range verification in proton therapy, Radiat. Phys. Chem. 137 (2017) 144-150, https://doi.org/10.1016/j.radphyschem.2016.04.020. 
  9. C. Golnik, F. Hueso-Gonzalez, A. Muller, P. Dendooven, W. Enghardt, F. Fiedler, T. Kormoll, K. Roemer, J. Petzoldt, A. Wagner, G. Pausch, Range assessment in particle therapy based on prompt γ-ray timing measurements, Phys. Med. Biol. 59 (2014) 5399-5422, https://doi.org/10.1088/0031-9155/59/18/5399. 
  10. J. Krimmer, D. Dauvergne, J.M. Letang, Testa, Prompt-gamma monitoring in hadrontherapy: a review, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 878 (2018) 58-73, https://doi.org/10.1016/j.nima.2017.07.063. 
  11. P. Cambraia Lopes, P. Crespo, J. Huizenga, D.R. Schaart, Optimization of the signal-to-background ratio in prompt gamma imaging using energy and shifting time-of-flight discrimination: experiments with a scanning parallel-slit collimator, IEEE Trans. Radiat. Plasma Med. Sci. 2 (2018) 510-519, https://doi.org/10.1109/TRPMS.2018.2846612. 
  12. C.H. Min, C.H. Kim, M.Y. Youn, J.W. Kim, Prompt gamma measurements for locating the dose falloff region in the proton therapy, Appl. Phys. Lett. 89 (2006) 2-5, https://doi.org/10.1063/1.2378561. 
  13. C. Richter, G. Pausch, S. Barczyk, M. Priegnitz, I. Keitz, J. Thiele, J. Smeets, F. Vander Stappen, L. Bombelli, C. Fiorini, L. Hotoiu, I. Perali, D. Prieels, W. Enghardt, M. Baumann, First clinical application of a prompt gamma based in vivo proton range verification system, Radiother. Oncol. 118 (2016) 232-237, https://doi.org/10.1016/j.radonc.2016.01.004. 
  14. J.M. Verburg, K. Riley, T. Bortfeld, J. Seco, Energy- and time-resolved detection of prompt gamma-rays for proton range verification, Phys. Med. Biol. 58 (2013), https://doi.org/10.1088/0031-9155/58/20/L37. 
  15. Y. Xie, E.H. Bentefour, G. Janssens, J. Smeets, F. Vander Stappen, L. Hotoiu, L. Yin, D. Dolney, S. Avery, F. O'Grady, D. Prieels, J. McDonough, T.D. Solberg, R.A. Lustig, A. Lin, B.K.K. Teo, Prompt gamma imaging for in vivo range verification of pencil beam scanning proton therapy, Int. J. Radiat. Oncol. Biol. Phys. 99 (2017) 210-218, https://doi.org/10.1016/j.ijrobp.2017.04.027. 
  16. W. Enghardt, P. Crespo, F. Fiedler, R. Hinz, K. Parodi, J. Pawelke, F. Ponisch, Charged hadron tumour therapy monitoring by means of PET, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 525 (2004) 284-288, https://doi.org/10.1016/j.nima.2004.03.128. 
  17. V. Ferrero, E. Fiorina, M. Morrocchi, F. Pennazio, G. Baroni, G. Battistoni, N. Belcari, N. Camarlinghi, M. Ciocca, A. Del Guerra, M. Donetti, S. Giordanengo, G. Giraudo, V. Patera, C. Peroni, A. Rivetti, M.D.D.R. Rolo, S. Rossi, V. Rosso, G. Sportelli, S. Tampellini, F. Valvo, R. Wheadon, P. Cerello, M.G. Bisogni, Online proton therapy monitoring: clinical test of a Silicon-photodetector-based in-beam PET, Sci. Rep. 8 (2018) 1-8, https://doi.org/10.1038/s41598-018-22325-6. 
  18. P. Cambraia Lopes, J. Bauer, A. Salomon, I. Rinaldi, V. Tabacchini, T. Tessonnier, P. Crespo, K. Parodi, D.R. Schaart, First in situ TOF-PET study using digital photon counters for proton range verification, Phys. Med. Biol. 61 (2016) 6203-6230, https://doi.org/10.1088/0031-9155/61/16/6203. 
  19. S.F. Kry, B. Bednarz, R.M. Howell, L. Dauer, D. Followill, E. Klein, H. Paganetti, B. Wang, C.S. Wuu, X. George Xu, M.C. Alves, W.S. Santos, C. Lee, W.E. Bolch, J.G. Hunt, A.B. Carvalho Junior, M. Jacquet, S. Marcatili, M.L. Gallin-Martel, J.L. Bouly, Y. Boursier, D. Dauvergne, M. Dupont, L. Gallin-Martel, J. Herault, J.M. Letang, D. Maneval, C. Morel, J.F. Muraz, E. Testa, K. Busch, A.G. Andersen, J.B.B. Petersen, S.E. Petersen, S. Heidi, M. Fang, Y. Altmann, D. Della Latta, M. Salvatori, A. Di Fulvio, H. Si, Y.S. Yeom, J.H. Jeong, M.C. Han, C.H. Kim, H.S. Kim, T.T. Nguyen, C. Choi, M.C. Han, C.H. Kim, J.K. Lee, M. Zankl, N. Petoussi-Henss, W.E. Bolch, C. Lee, B.S. Chung, New small-intestine modeling method for surface-based computational human phantoms, ArXiv 36 (2017), https://doi.org/10.1093/rpd/ncw271 e391-e429. 
  20. M. Moteabbed, S. Espana, H. Paganetti, Monte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapy, Phys. Med. Biol. 56 (2011) 1063-1082, https://doi.org/10.1088/0031-9155/56/4/012. 
  21. T. Nishio, A. Miyatake, T. Ogino, K. Nakagawa, N. Saijo, H. Esumi, The development and clinical use of a beam ON-LINE PET system mounted on a rotating gantry port in proton therapy, Int. J. Radiat. Oncol. Biol. Phys. 76 (2010) 277-286, https://doi.org/10.1016/j.ijrobp.2009.05.065. 
  22. H. Tashima, T. Yamaya, E. Yoshida, S. Kinouchi, M. Watanabe, E. Tanaka, A single-ring OpenPET enabling PET imaging during radiotherapy, Phys. Med. Biol. 57 (2012) 4705-4718, https://doi.org/10.1088/0031-9155/57/14/4705. 
  23. H. Tashima, E. Yoshida, N. Inadama, F. Nishikido, Y. Nakajima, H. Wakizaka, T. Shinaji, M. Nitta, S. Kinouchi, M. Suga, H. Haneishi, T. Inaniwa, T. Yamaya, Development of a small single-ring OpenPET prototype with a novel transformable architecture, Phys. Med. Biol. 61 (2016) 1795-1809, https://doi.org/10.1088/0031-9155/61/4/1795. 
  24. X. Zhu, G. El Fakhri, Proton therapy verification with PET imaging, Theranostics 3 (2013) 731-740, https://doi.org/10.7150/thno.5162. 
  25. H.J. Choi, J.W. Jang, W.G. Shin, H. Park, S. Incerti, C.H. Min, Development of integrated prompt gamma imaging and positron emission tomography system for in vivo 3-D dose verification: a Monte Carlo study, Phys. Med. Biol. 65 (2020), https://doi.org/10.1088/1361-6560/ab857c. 
  26. C. Kim, J.-Y. Yeom, G. Kim, Digital n-g pulse shape discrimination in organic scintillators with a high-speed digitizer, J. Radiat. Prot. Res. 44 (2019) 53-63, https://doi.org/10.14407/jrpr.2019.44.2.53. 
  27. R. Bugalho, A. Di Francesco, L. Ferramacho, C. Leong, T. Niknejad, L. Oliveira, L. Pacher, M. Rolo, A. Rivetti, M. Silveira, J.C. Silva, R. Silva, S. Tavernier, J. Varela, Experimental results with TOFPET2 ASIC for time-of-flight applications, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 912 (2018) 195-198, https://doi.org/10.1016/j.nima.2017.11.034. 
  28. T. Merlin, S. Stute, D. Benoit, J. Bert, T. Carlier, C. Comtat, M. Filipovic, F. Lamare, D. Visvikis, CASToR: a generic data organization and processing code framework for multi-modal and multi-dimensional tomographic reconstruction, Phys. Med. Biol. 63 (2018), https://doi.org/10.1088/1361-6560/aadac1, 0-15. 
  29. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gomez Cadenas, I. Gonzalez, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampen, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, GEANT4 - a simulation toolkit, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 506 (2003) 250-303, https://doi.org/10.1016/S0168-9002(03)01368-8. 
  30. M.C. Battaglia, D. Schardt, J.M. Espino, M.I. Gallardo, M.A. Cortes-Giraldo, J.M. Quesada, A.M. Lallena, H. Miras, D. Guirado, Dosimetric response of radiochromic films to protons of low energies in the Bragg peak region, Phys. Rev. Accel. Beams. 19 (2016) 1-7, https://doi.org/10.1103/PhysRevAccelBeams.19.064701. 
  31. J. Sorriaux, A. Kacperek, S. Rossomme, J.A. Lee, D. Bertrand, S. Vynckier, E. Sterpin, Evaluation of Gafchromic® EBT3 films characteristics in therapy photon, electron and proton beams, Phys. Med. 29 (2013) 599-606, https://doi.org/10.1016/j.ejmp.2012.10.001.