DOI QR코드

DOI QR Code

Conceptual design of hybrid target for molybdenum-99 production based on heavywater

  • 투고 : 2022.07.26
  • 심사 : 2023.01.15
  • 발행 : 2023.05.25

초록

Molybdenum-99 (99Mo) is used for preparing Technetium-99 m (99mTc), which is the most widely used isotope in nuclear medicine. In this work, a study for 99Mo production based on a high-power electron accelerator has been performed as an alternative approach to produce 99mTc. In this study, Monte Carlo MCNPX2.6 code has been used to examine a novel idea of simultaneous hybrid production of 99Mo via both photoneutron and neutron capture reactions using an electron accelerator in heavy water tank. It is expected that this conceptual design including an arrangement of metallic plates of 100Mo and 98Mo produces total activity of 97.5 Ci at the end of 20-h continuous e-beam irradiation (30 MeV, 10 mA).

키워드

과제정보

The authors want to sincerely thank Dr. H. Khalafi for all the helps and supports.

참고문헌

  1. P. Peykov, R. Cameron, The Supply of Medical Radioisotopes. Medical Isotope Supply in the Future: Production Capacity and Demand, Organization for Economic Co-Operation and Development, 2014. Forecast for the 99mo/99mTc market, 2015-2020, https://inis.iaea.org/search/search.aspx?orig_q=RN:46027364. (Accessed 8 July 2022). 
  2. National Academies of Sciences, Engineering, and Medicine, Molybdenum-99 for Medical Imaging, National Academies Press, Washington (DC), 2016. 
  3. National Research Council, Medical Isotope Production without Highly Enriched Uranium, National Academies Press, Washington (DC), 2009. 
  4. J.T. Bushberg, J. Anthony Seiberg, E.M. Leidholdt Jr., J.M. Boone, The Essential Physics of Medical Imaging, Lippincott Williams & Wilkins, Philadelphia, 2020. 
  5. International Atomic Energy Agency, Feasibility of producing molybdenum-99 on a small scale using fission of low enriched uranium or neutron activation of natural molybdenum, in: Technical Reports Series No. 478, IAEA, Vienna, 2015. 
  6. S.-K. Lee, G.J. Beyer, J.S. Lee, Development of industrial-scale fission 99Mo production process using low enriched uranium target, Nucl. Eng. Technol. 48 (2016) 613-623.  https://doi.org/10.1016/j.net.2016.04.006
  7. J.R. Ballinger, Short- and long-term responses to molybdenum-99 shortages in nuclear medicine, Br. J. Radiol. 83 (2010) 899-901.  https://doi.org/10.1259/bjr/17139152
  8. C.K. Ross, W.T. Diamond, Predictions Regarding the Supply of 99Mo and 99mTc when NRU Ceases Production in, 2018 arXiv [physics.med-Ph]. (2015), http://arxiv.org/abs/1506.08065. 
  9. J. Esposito, M. Bello, A. Boschi, G. Cicoria, L. De Nardo, G. Di Domenico, A. Duatti, M. Gambaccini, M. Giganti, L. Gini, Others, Accelerator-based alternatives to non-HEU production of Tc-99m, in: Final Report of the Coordinated Research Project on "Accelerator-Based Alternatives to Non-HEU Production of Mo-99/Tc-99m, 2014, pp. 110-119. 
  10. K. Mang'era, K. Ogbomo, R. Zriba, J. Fitzpatrick, J. Brown, E. Pellerin, J. Barnard, C. Saunders, M. de Jong, Processing and evaluation of linear accelerator-produced 99Mo/99mTc in Canada, J. Radioanal. Nucl. Chem. 305 (2015) 79-85.  https://doi.org/10.1007/s10967-015-3997-5
  11. M.A. Brown, N. Johnson, A.V. Gelis, M. Stika, A.G. Servis, A. Bakken, C. Krizmanich, K. Shannon, P. Kozak, A. Barnhart, C. Denbrock, N. Luciani, T. Grimm, P. Tkac, Recovery of high specific activity molybdenum-99 from accelerator-induced fission on low-enriched uranium for technetium-99m generators, Sci. Rep. 11 (2021), 13292. 
  12. M.R.A. Rovais, K. Aardaneh, G. Aslani, A. Rahiminejad, K. Yousefi, F. Boulouri, Assessment of the direct cyclotron production of 99mTc: an approach to crisis management of 99mTc shortage, Appl. Radiat. Isot. 112 (2016) 55-61.  https://doi.org/10.1016/j.apradiso.2016.03.017
  13. International Atomic Energy Agency, Cyclotron Based Production of Technetium-99m, IAEA Radioisotopes and Radiopharmaceuticals Reports No. 2, International Atomic Energy Agency, Vienna, 2017. 
  14. A. Tsechanski, A.F. Bielajew, J.P. Archambault, E. Mainegra-Hing, Electron accelerator-based production of molybdenum-99: bremsstrahlung and photoneutron generation from molybdenum vs. tungsten, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 366 (2016) 124-139, https://doi.org/10.1016/j.nimb.2015.10.057. 
  15. J. Jang, M. Yamamoto, M. Uesaka, Design of an X-band electron linear accelerator dedicated to decentralized 99Mo99mTc supply: from beam energy selection to yield estimation, Phys. Rev. Accel. Beams. 20 (2017), 104701. 
  16. S. Chemerisov, R. Gromov, T. Petersen, C. Jonah, K. Wesolowski, K. Alford, K. Quigley, A. Reavis, D. Rotsch, T. Brossard, J. Byrnes, P. Tkac, Results of the Six-Day Electron-Accelerator Irradiation of Enriched Mo-100 Targets for the Production of Mo-99, Argonne National Laboratory (ANL), 2019, https://doi.org/10.2172/1596342. 
  17. J. McCarter, M. Brennan, S. Burns, J. Harvey, S. Kelley, T. Montenegro, Q. Schiller, Accelerator Production of Mo-99 Using Mo-100, JACoW Publishing, Geneva, Switzerland, 2021, https://doi.org/10.18429/JACOW-IPAC2021-MOPAB412. 
  18. A. Shaikh, T. Dixit, A. Deshpande, R. Krishnan, GEANT4 based simulation study of converter and direct target design and optimization of target for 99Mo production using 30 MeV electron linear accelerator, Appl. Radiat. Isot. 185 (2022), 110239. 
  19. J. Jang, H. Kikunaga, S. Sekimoto, M. Inagaki, T. Kawakami, T. Ohtsuki, S. Kashiwagi, K. Takahashi, K. Tsukada, K. Tatenuma, M. Uesaka, Design and testing of a W-MoO3 target system for electron linac production of 99Mo/99mTc, Nucl. Instrum. Methods Phys. Res. A. 987 (2021), 164815. 
  20. J.M. Bassaler, J.M. Capdevila, O. Gal, F. Laine, A. Nguyen, J.P. Nicolai, K. Umiastowski, Rhodotron: an accelerator for industrial irradiation, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 68 (1992) 92-95, https://doi.org/10.1016/0168-583x(92)96056-5. 
  21. Iba, Rhodotron E-Beam Accelerator, (n.d. https://www.iba-industrial.com/accelerators. 
  22. MCNPX User's Manual, Report LA-CP-02-408, 2002, Version 2.4. 0. 
  23. F. Torabi, S.F. Masoudi, F. Rahmani, Photoneutron production by a 25MeV electron linac for BNCT application, Ann. Nucl. Energy 54 (2013) 192-196.  https://doi.org/10.1016/j.anucene.2012.11.001
  24. A. Taghibi Khotbeh-Saraa, F. Rahmania, F. Ghasemib, Feasibility study of Mo99 production using high-power electron Linac: nuclear and thermal-mechanical analysis based on photoneutron interaction, Radiation Physics and Engineering 2 (2021) 9-17. 
  25. M.J. Berger, S.M. Seltzer, Bremsstrahlung and photoneutrons from thick tungsten and tantalum targets, Phys. Rev. C: Nucl. Phys. 2 (1970) 621-631.  https://doi.org/10.1103/PhysRevC.2.621
  26. M. Salehi, F. Ghasemi, F.A. Davani, M. Ansari, A. Poursaleh, New beam delivery system design for industrial electron accelerator at Nuclear Science and Technology Research Institute, Iran, Appl. Radiat. Isot. 184 (2022), 110220. 
  27. S. Howard, V.N. Starovoitova, Target optimization for the photonuclear production of radioisotopes, Appl. Radiat. Isot. 96 (2015) 162-167.  https://doi.org/10.1016/j.apradiso.2014.12.003
  28. K.S. Krane, Introductory Nuclear Physics, John Wiley & Sons, 1991. 
  29. A. Taghibi Khotbeh-Sara, R. Faezeh, F. Ghasemi, Feasibility Study on Mo-99 Production Using Hybrid Method Based on High Power Electron Accelerator, JACoW Publishing, Geneva, Switzerland, 2019, pp. 3462-3465. IPAC2019. 
  30. N. Soppera, E. Dupont, M. Fleming, JANIS Book of Neutron-Induced Cross-Sections, 2020. https://www.oecd-nea.org/janis/. 
  31. J. Meija, T.B. Coplen, M. Berglund, W.A. Brand, P. De Bievre, M. Gr oning, N.E. Holden, J. Irrgeher, R.D. Loss, T. Walczyk, T. Prohaska, Isotopic compositions of the elements 2013 (IUPAC technical report), J. Macromol. Sci. Part A Pure Appl. Chem. 88 (2016) 293-306.  https://doi.org/10.1515/pac-2015-0503
  32. T.M. Martin, T. Harahsheh, B. Munoz, Z. Hamoui, R. Clanton, J. Douglas, P. Brown, G. Akabani, Production of 99Mo/99mTc via photoneutron reaction using natural molybdenum and enriched 100Mo: part 1, theoretical analysis, J. Radioanal. Nucl. Chem. 314 (2017) 1051-1062.  https://doi.org/10.1007/s10967-017-5455-z
  33. S. Tabasi, S. Arani, Assessment of Mo-99 radioisotope supply chain using LEU in Iran, J. Nucl. Med. 42 (2021) 104-110, https://doi.org/10.24200/nst.2021.1302.