• Title/Summary/Keyword: $^{99}Mo/^{99m}Tc$

Search Result 43, Processing Time 0.02 seconds

A Study of Gamma-ray Distribution around the $^{99}Mo-^{99m}TcO_4$ Generator ($^{99}Mo-^{99m}TcO_4$ Generator의 감마선량 분포에 관한 연구)

  • Park, Soung-Ock
    • Journal of radiological science and technology
    • /
    • v.24 no.1
    • /
    • pp.49-53
    • /
    • 2001
  • A number of radionuclides of interest in nuclear medicine are short lived isotopes that emit only gamma ray. The most of all Dept. of Nuclear Medicine in the hospt. are using the $^{99}Mo-^{99m}Tc$ generator for elution of the short lived isotope $^{99m}TcO_4$. A $^{99}Mo-^{99m}Tc$ generator consists of an alumina column on which $^{99}Mo$ is bound. The parent isotope($^{99}Mo$ : half life 67 hr.) decays to its daughter $^{99m}TcO_4^-$ which is a different element with a shorter half-life. $^{99}Mo$ emitted 41-keV(1.3%), 141-keV(5.6%) 181-keV(6.6%) and 366-keV(1.5%) gamma rays. But $^{99m}TcO_4$ emitted only 140-keV gamma ray. We study about the gamma ray distribution around the $^{99}Mo$ generator. And obtained the result as follows ; 1. Total counted gamma ray from generator smaller in front side than back. 2. The gamma ray emitted from $^{99}Mo$ generator without $^{99m}TcO_4$ vial increased in the back side(Mo column posited side) 3. The gamma ray only from the $^{99m}TcO_4$ vial increased in the front side. 4. Apron can protect gamma ray above 60% of total radiation from the $^{99}Mo$ generator.

  • PDF

The Evaluation of Usefulness of 99Mo-99mTc Generator Using(n,γ)99Mo Developed by Korea Atomic Energy Research ((n,γ)99Mo를 이용한 99Mo-99mTc발생기의 유용성 평가)

  • Seo, Han Kyung;Kim, Jeong Ho;Shim, Cheol Min;Kim, Byung Cheol;Choi, Do Cheol;Gwon, Yong Ju;Park, Yung Sun;Kim, Dong Yun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.48-52
    • /
    • 2013
  • Purpose: The Molybdenum which is the raw material of $^{99}Mo-^{99m}Tc$ generator is produced from the nuclear reactor. However, output has dwindled as the two nuclear reactors supplying the bulk of radioactive material-one in Chalk River, Ontario and the other in Petten, the Netherlands-have been closed for repairs or maintenance. This resulted in the enhancement of its price. So $^{99}Mo-^{99m}Tc$ generator using$(n,{\gamma})^{99}Mo$ is developed by Korea Atomic Energy Research Institute (KAERI). Medicinal availability of this generator is evaluated in this study. Materials and Methods: The radioactivity of $^{99m}Tc$ eluted in generator 1, 2 and 3 unit developed by KAERI was measured. The quality control test of generator such as appearance test, pH test, LAL test, sterility test, chemical impurity (Al) test and radiochemical purity test were performed. Planar and SPECT/CT image sof SD rat (6 weeks, Female) at 2 hr after injection of $^{99m}Tc-HDP$ (hydroxymethylenediphosphonate) (TechneScan HDP, Malinckrodt Medical, Dutch) and $^{99m}Tc-DPD$ (diphosphono-1, 2-propanedicarboxylicacid) (TECEOS, CIS bio international, France) which were labeled with $^{99m}Tc$ eluted in KAERI and commercial generator (40.5 GBq, Malinckrodt Medical, Dutch) using SPECT/CT camera (Symbia, Siemense, Germany) were obtained respectively. Results: The mean radioactivity of $^{99m}Tc$ elution generator 1unit was 4.18 GBq (113 mCi), generator 2 unit was 4.73 GBq (128 mCi) and generator 3 unit was 3.33 GBq (90 mCi). All quality control tests were within normal limit except pyrogentest. Pyrogen test was positive. Planar and SPECT/CT images of rat injected $^{99m}Tc-HDP$ which was labeled with $^{99m}Tc$ eluted in commercial generator show increased uptake in bone, stomach and bowl. Planar images show increased uptake in liver and bone in case of $^{99m}Tc-DPD$. However, images of rat injected $^{99m}Tc-HDP$ and $^{99m}Tc-DPD$ which were labelled $^{99m}Tc$ eluted in KAERI generator show increased uptake in bone, liver and spleen. Conclusion: If shortcoming is removed such as pyrogen and liver appearance, domestic role as an alternative generator is thought to be able to fill and to secure the national medical service by supplying $^{99m}Tc$ when the supply of $^{99m}Tc$ be comes short.

  • PDF

Effect of $Al^{3+}$ on Labeling Efficiency and Biodistribution of $^{99m}Tc$-MDP ($Al^{3+}$ 존재가 $^{99m}Tc$-MDP의 표지효율과 생체내 분포에 미치는 영향)

  • Chang, Young-Soo;Jeong, Jae-Min;Kim, Young-Ju;Kwark, Cheol-Eun;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.3
    • /
    • pp.361-366
    • /
    • 1996
  • This study was to determine the effect of $Al^{3+}$ in $^{99m}Tc$ eluate from $^{99}Mo-^{99m}Tc$ generator on labeling efficiency and biodistribution of $^{99m}Tc$-MDP. The chromatographic analysis of $^{99m}Tc$-MDP preparations containing $Al^{3+}(0-62.5{\mu}g/ml)$ showed decreased labeling efficiency $^{99m}Tc$ pertechnetate and hydrolyzed reduced $^{99m}Tc$ fraction increased with increasing concentrations of aluminum. However, the chromatography system could not discern between hydrolyzed reduced $^{99m}Tc$ and $^{99m}Tc$ labeled colloid. $^{99m}Tc$-MDP preparations containing aluminum were relatively stable. Chromatographic analysis also confirmed that no significant differences were observed in the radiochemical purity of the filtered and the unfiltered $^{99m}Tc$-MDP preparations containing aluminum by $0.22{\mu}m$ syringe filter. In biodistribution data of ICR-mice, blood and heart uptake were increasing with increasing concentrations of aluminum, because of decreasing labeling efficiency of $^{99m}Tc$-MDP and increasing of $^{99m}Tc$ pertechnetate. However, liver and bone uptake were not significantly increased. In rat images no difference were observed at $5{\mu}g/ml\;Al^{3+}$ compare with at $0{\mu}g/ml\;Al^{3+}$, but at $10{\mu}g/ml\;Al^{3+}$ lumbar uptake was increased. As a practical conclusion, a concentration below $10{\mu}g/ml\;Al^{3+}$($10{\mu}g/ml\;Al^{3+}$ is the maximum allowed in pertechnetate eluate from $^{99}Mo-^{99m}Tc$ generator by USP.) in $^{99m}Tc$-MDP radiopharmaceutical result in low labeling efficiency. Radiochemical purity 90% of $^{99m}Tc$-MDP is the minimum allowed by USP. Therefore, when soft tissue uptake is observed in $^{99m}Tc$-MDP bone scan and labeling efficiency is above 90%, we can expect that $Al^{3+}$ in pertechnetated eluate is not the cause of soft tissue uptake.

  • PDF

The Evaluation of Usefulness of Two Times Elution a Day of $^{99m}Tc$ Using $^{99}Mo$-$^{99m}Tc$ Generator ($^{99m}Tc$ 발생기의 24시간 내 2회 용출의 유용성 평가)

  • Kim, Jeong-Ho;Seo, Han-Kyung;Jeong, Yeong-Hwan;Kim, Yeong-Su;Kim, Byung-Cheol;Gwon, Yong-Ju;Lee, Jeong-Ok;Park, Yeong-Sun;Kim, Dong-Yun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.83-86
    • /
    • 2010
  • Purpose: The Molybdenum which is the raw material of $^{99}Mo$-$^{99m}Tc$ generator (generator) is produced from the nuclear reactor. However, output has dwindled as the two nuclear reactors supplying the bulk of radioactive material-one in Chalk River, Ontario and the other in Petten, the Netherlands-have been closed for repairs or maintenance. This resulted in the enhancement of its price. Therefore we have tried to seek the new method which could run generator to increase activity of $^{99m}Tc$ in this study. Materials and Methods: The $^{99m}Tc$ activity obtained from 5 times elution for 5 days from Monday to Friday using two generators was compared with 10 times elution. Appearance test, pH test, LAL test, sterility test, chemical impurity(Al) test, radio chemical purity test, ratio of $^{99}Mo$/$^{99m}Tc$ activity test have been done to check the stability of $^{99m}Tc$ eluting from generator respectively. Results: The $^{99m}Tc$ activity obtained from 5 times elution for 5 days was 168.2 GBq (4545 mCi) and 10 times was 230.5 GBq (6230 mCi). All quality control tests were within normal limit. Conclusion: We got to know that 2 times elution a day obtained more $^{99m}Tc$ activity than one time elution in this study.

  • PDF

A Convenient Method on the Methyl-Ethyl-Ketone Extraction of $^{99m}TcO^-{_4}$ ($^{99m}TcO^-{_4}$의 메틸-에틸-케톤-간편 추출법)

  • Lee, Jong-Du;Lee, Byung-Hyn
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.2
    • /
    • pp.103-111
    • /
    • 1984
  • A convenient method of $^{99m}Tc$-methyl-ethyl-ketone (MEK) extraction technique was developed and a mobile $^{99m}Tc$-extraction generator was designed. The MEK extraction and the phase separation of $^{99m}TcO^-{_4}$ were carried out with a simple procedure in the same container. The shielding of $^{99}Mo$ radioactivity was made with one lead container. The system was simplified by shielding $^{99m}TcO_4{^-}({\gamma}_e=0.14\;MeV)$ separately. $^{99m}TcO^-{_4}\;in\;^{99m}Tc-MEK$ extract was recovered by adsorption and elution only, and therefore, the possibility of volatilization was reduced. The volume of $^{99m}TcO^{-}{_4}$-saline product was reduced to 1 ml by using a small alumina column and the column operation time was shortened. The separation time of $^{99m}Tc$ was reduced to 30 minutes, and the operation was carried out at the outside of the shielding. The system was designed to operate under the condition of bacteria-free.

  • PDF

[ $^{99m}Tc$ ] Generator Safety Simulation Based on GEANT4 (GEANT4를 이용한 $^{99m}Tc$ Generator 안전성 시뮬레이션)

  • Kang, Sang-Koo;Han, Dong-Hyun;Kim, Chong-Yeal
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Technisium $(^{99m}Tc)$ is one of the most widely used radioactive isotopes for diagnosis in nuclear medicine. In general, technisium is produced inside the so called $^{99m}Tc$ generator which is usually made out of lead to shield relatively high energy radiation from $^{99}Mo$ and its daughter nuclide $^{99m}Tc$. In this paper, a GEANT4 simulation is carried out to test the safety of the $^{99m}Tc$ generator, taking the Daiichi product with radioactivity of 500 mCi as an example. According to the domestic regulation on radiation safety, the dose at 10 cm and 100 cm away from the surface of shielding container should not exceed 2.0 mSv/h and 0.02 mSv/h, respectively. The simulated dose turned out to be less than the limit, satisfying the domestic regulation.

  • PDF

A Study on the Condition Analysis and Improvement of Domestic Medical 99Mo/99mTc Generators Self-disposal (국내 의료용 99Mo/99mTc Generator 자체 처분 지침 현황 분석 및 개선 방향에 대한 연구)

  • Ryu, Chan-Ju;Hong, Seong-Jong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.297-303
    • /
    • 2019
  • The nuclear medicine department of a domestic medical institution uses $^{99m}TcI$, a radionuclide, from $^{99}Mo/^{99m}TcI$ Generator, to inject radioactive drugs into patients. Among the expired generators, imported from foreign countries, the medical institution implements its own disposal. Each medical institution shall satisfy the permitted in-house disposal concentration of radioactive wastes. The guidelines for self-disposal presented in Korea suggested that self-disposal can be performed 80 days after the generator is used. The purpose of these guidelines is to analyze them by comparing them with the data measured directly with the generator and to study if they are feasible. As a result, the generator with a capacity of 1,000 mCi has the longest half-life, and when tested with a high-radiation Mo(molybdenum) column, the number of days that are below the permitted concentration of body disposal with radioactive waste was 72 days and 71 days that were derived from direct column measurement. The results of the direct study confirmed that the guidelines for in-house disposal in Korea were reasonable, as there were 8 to 9 days of storage compared to the number of in-house disposal days provided in the guidelines.

Conceptual design of hybrid target for molybdenum-99 production based on heavywater

  • Ali Torkamani ;Ali Taghibi Khotbehsara ;Faezeh Rahmani ;Alexander Khelvas ;Alexander Bugaev ;Farshad Ghasemi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1863-1870
    • /
    • 2023
  • Molybdenum-99 (99Mo) is used for preparing Technetium-99 m (99mTc), which is the most widely used isotope in nuclear medicine. In this work, a study for 99Mo production based on a high-power electron accelerator has been performed as an alternative approach to produce 99mTc. In this study, Monte Carlo MCNPX2.6 code has been used to examine a novel idea of simultaneous hybrid production of 99Mo via both photoneutron and neutron capture reactions using an electron accelerator in heavy water tank. It is expected that this conceptual design including an arrangement of metallic plates of 100Mo and 98Mo produces total activity of 97.5 Ci at the end of 20-h continuous e-beam irradiation (30 MeV, 10 mA).

Preparation of $^{99m}Tc$ Ferric Hydroxide Macroaggregates for Lung Perfusion Studies

  • Kim, Young-Hwan;Kim, Young-Sup;Kim, Young-Kuk
    • Nuclear Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.327-330
    • /
    • 1972
  • $^{99m}$Tc Ferric Hydroxide Macroaggregates for Lung Perfusion Studies were prepared from home made Na $^{99m}$TcO$_4$ which was extracted by methyl ethyl ketone from low activity $^{99m}$Mo. Particle size was in between 20 and 60$\mu$. Rabbit and human body tests gave excellent results.sults.

  • PDF

Analysis of $^{99}Tc$ and Its Activity Level in the Korean Soil (한국 토양의 $^{99}Tc$ 분석 및 방사능 농도 준위)

  • Lee, Chang-Woo;Chung, Kun-Ho;Cho, Young-Hyun;Kang, Mun-Ja;Lee, Wan-No;Kim, Hee-Reyoung;Choi, Geun-Sik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • An analytical method of $^{99}Tc$ concentration in soil was set up and discussed considering the $^{99}Tc$ concentration in Korean soil measured with its analytical method. A selective TEVA resin was used to separate and purify the $^{99}Tc$ in the soil sample. $^{99m}Tc$ from a commercial $^{99}Mo/^{99m}Tc$ generator was used as a yield tracer for the chemical separation of $^{99}Tc$ and its problem when using $^{99m}Tc$ as a tracer was discussed. The chemical recovery yield of $^{99}Tc$ was above 70%. The optimum conditions of inductively coupled plasma mass spectrometry system(ICP-MS) were set up to determine the $^{99}Tc$ after the separation process. The minimum detectable activity(MDA) was 15 mBq/kg-dry in this analytical procedure. The $^{99}Tc$ concentration in soils of Jeju and Kori were measured in the rage of 33.73-89.16 mBq/kg-dry. Those values were less than those reported in other countries and seemed to be originated from atmospheric fallout.

  • PDF