DOI QR코드

DOI QR Code

Identification of the main cause of mortality in a commercial Oreaochromis niloticus farm: The role of poly-β-hydroxybutyrate as a preventive measure against Edwardsiellosis

  • Fatma M. M. Korni (Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Beni-Suef University) ;
  • Fatma I. Abo El-Ela (Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University) ;
  • Usama K. Moawad (Department of Histology and Cytology, Faculty of Veterinary Medicine, Beni-Suef University)
  • Received : 2022.12.31
  • Accepted : 2023.03.13
  • Published : 2023.06.30

Abstract

The current study aimed to identify the primary cause of mortality in a commercial Oreochromis niloticus (O. niloticus) farm. Furthermore, the efficacy of poly-β-hydroxybutyrate (PHB) as a feed additive to prevent mortality was investigated after in-vitro testing. Also, a histopathological examination was carried out. The samples of naturally diseased O. niloticus showed swellings and hemorrhages on the body surface. Moreover, the post-mortem examination revealed black fluids with an awful odor, a congested liver, and intestinal gasses. Concerning diagnosis of the main cause of mortality in diseased O. niloticus, , there were eight isolates might be Edwardsiella tarda based on the biochemical identification results. Also, the identification was confirmed by using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The resulting spectra of two previously identified E. tarda strains were then compared to those found in the Bruker database and the two strains were identified as E. tarda at the species level. For detection of pathogenicity of identified strains, the virulence E. tarda hemolysin (ETHA) gene were detected at band 1078 bp in the eight identified strains. Regarding the in-vitro antimicrobial activity of PHB against E. tarda, the antibacterial activity of blood and tissues had been calculated using the Agar and well diffusion procedures Prior to and after the challenge,. Lower bacterial counts and a larger inhibition zone were signs of the tested materials' concentration-dependent antibacterial activity. For in-vivo evaluation of PHB in dietary-fed O. niloticus, PHB was effective in preventing Edwardsiellosis, with the lowest mortality rates in the group fed 10 g PHB/Kg feed after being injected with E. tarda. In comparison, the group that received a 5 g PHB/Kg feed after receiving an injection of E. tarda saw 16.6% mortalities and a 66.7 percent relative survival rate. The control positive group had 50% mortality. The results of the biochemical testes showed that O. niloticus's kidney and liver functions were unaffected by dietary PHB supplementation. Protein, albumin, globulin, urea, creatinine, aspartate transaminase levels were identical to those of the control negative group. According to the current study, the groups fed high and low PHB concentrations had considerably higher levels of immunoglobulin M, complement 5, and interleukin-1 than the control group. The number of total viable bacteria was lower in the gut of PHB-fed groups than in control. Compared to mild histological alterations in those fed with a lower dosage and severe histopathological abnormalities in the control group, the greater dose of PHB effectively prevented Edwardsiellosis in O. niloticus with decreased mortality and no histopathological changes.

Keywords

Acknowledgement

We would like to thank Alexandria Main University Hospital Microbiology Laboratory, Egypt for analysis of E. tarda strains by MALDI-TOF MS.

References

  1. Abouseada, N, May M., Passent M. (2016). Impact of MALDI TOF in Diagnostic Microbiology, 25 , (3): 31-35.  https://doi.org/10.12816/0036807
  2. Alderman, David & Hastings, T. S., Alderman DJ, Hastings TS.(2003). Antibiotic use in aquaculture: development of antibiotic resistance-potential for consumer health risks. International Journal of Food Science & Technology. 33. 139-155. 10.1046/j.1365-2621.1998.3320139.x. 
  3. Amend, D.F. (1981). Potency testing of fish vaccines. Developments in Biological Standardization 49: 447-454. 
  4. Anderson A and Dawes E. (990). Occurrence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 1;54: 450-472.  https://doi.org/10.1128/mr.54.4.450-472.1990
  5. ARASON, G.J. (1996). Lectins as defence molecules in vertebrates and invertebrates. Fish Shellfish Immunol., v.6, p.277-289.  https://doi.org/10.1006/fsim.1996.0029
  6. Austin, B. and Austin, D. A. (2007): Bacterial fish pathogen. Diseases of farmed and wild fish. 4th Ed. Ellis Harwood Limited. New York, London. page 30. 
  7. Bancroft J, Gamble A. (2008). Theory and practice of histological techniques. 6th ed. Edinburgh, London, Melbourne, New York: Churchill-Livingstone. 
  8. BAYNE, C.J.; GERWICK, L. (2001). The acute phase response and innate immunity of fish. Dev. Comp. Immunol., v.25, p.725-743.  https://doi.org/10.1016/S0145-305X(01)00033-7
  9. Biller-Takahashi, J.D.; Takahashi, L.S.; Pilarski, F.; Sebastiao , F.A.; Urbinati, E.C.(2013). Serum bactericidal activity as indicator of innate immunity in pacu Piaractus mesopotamicus (Holmberg, 1887). Arq. Bras. Med. Vet. Zootec., v.65, n.6, p.1745-1751.  https://doi.org/10.1590/S0102-09352013000600023
  10. Bizzini A, Durussel C, Bille J, Greub G, Prod'hom G. (2010). Performance of matrix-assisted laser desorption ionizationtime of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J Clin Microbiol. 48, 1549-1554. 
  11. Bonartsev AP, Bonartseva GA, Reshetov IV, Kirpichni- kov MP, Shaitan KV. (2019). Application of Polyhydroxyalkanoates in Medicine and the Biological Activity of Natural Poly(3-Hydroxybutyrate). Acta Naturae. 11(2):4-16. doi:10.32607/20758251-2019-11-2-4-16. 
  12. Collee, J. G.; Duguid, J. P.; Fraser and Marmion, B. P. (1996). Mackie and McCartney practical medical microbiology. 14th Ed. The English language book society and Churchill Livingstone Edinburgh and New York. 
  13. Cruickshank R., Duguid J.P., Marmian B.P. and Swain R.H.A. (1979). The practice of medical Microbiol 12th ed., Churchill Livingstone, Edinburgh, London. Medical Microbiol.(2) 121-123. 
  14. Darwish A, Plumb, J. A. and Newton, J. C. (2000). Histopathology and pathogenesis of experimental infection with Edwardsiella tarda in channel catfish; J. Aqua. Anim. Hlth.., 12: 255-266.  https://doi.org/10.1577/1548-8667(2000)012<0255:HAPOEI>2.0.CO;2
  15. DAS, B.K.; PRADHAN, J.; SAHU, S. (2009). The effect of Euglena viridis on immune response of rohu, Labeo rohita (Ham.). Fish Shellfish Immunol., v.26, p.871-876.  https://doi.org/10.1016/j.fsi.2009.03.016
  16. ELLIS, A.E. (2001). Innate host defense mechanism of fish against virus and bacteria. Dev. Comp. Immunol., v.25, p.827-839.  https://doi.org/10.1016/S0145-305X(01)00038-6
  17. Defoirdt T, et al. (2007). The bacterial storage compound poly-b-hydroxybutyrate protects Artemia franciscana from pathogenic Vibrio campbellii. Enviro Microbiol. 09:445-452.  https://doi.org/10.1111/j.1462-2920.2006.01161.x
  18. Dfoirdt, T.; Sorgeloos, P. (2011). Bossier, P. Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr. Opin. Microbiol. 14, 251-258  https://doi.org/10.1016/j.mib.2011.03.004
  19. Halet D, et al. (2007). Poly-b-hydroxybutyrate-accumulating bacteria protect gnotobiotic Artemia franciscana from pathogenic Vibrio campbellii. FEMS Microbiol Ecol. 60:363-369.  https://doi.org/10.1111/j.1574-6941.2007.00305.x
  20. Hirono, I. Nahoko Tange and Takashi Aoki (1997). Iron-regulated haemolysin gene from Edwardsiella tarda. Molecular Microbiology (1997) 24(4), 851-856.  https://doi.org/10.1046/j.1365-2958.1997.3971760.x
  21. Kato N., Konishi H., Shimao M. & Sakazawa C. (1992.) Production of 3 hydroxybutyric acid trimer by Bacillus megaterium B-124. J Ferment Bioeng 73: 246- 247.  https://doi.org/10.1016/0922-338X(92)90173-R
  22. Kim, H. S., Lee, K.W., Jung, H.S., Kim, J., Yun, A., Cho, S.H. & Kwon, M. (2017). Effects of dietary inclusion of yacon, ginger and blueberry on growth, body composition and challenge test of juvenile rockfish (Sebastes schlegeli) against Edwardsiella tarda. Aquaculture nutrition. 24, 1048-1055.  https://doi.org/10.1111/anu.12643
  23. Krieg, N. R. & Holt, J. G. (1984). Bergey's Manual of Systematic Bacteriology. Williams & Wilkins, Baltimore. 
  24. Kurokawa S, Kabayama J, Fukuyasu T, Hwang SD, Park CI, Park SB, del Castillo CS, Hikima J, Jung TS, Kondo H, Hirono I, Takeyama H, Aoki T. (2013). Bacterial classification of fish-pathogenic Mycobacterium species by multigene phylogenetic analyses and MALDI Biotyper identification system. Mar Biotechnol (NY), 15, 340-348.  https://doi.org/10.1007/s10126-012-9492-x
  25. Najdegerami EH, et al. (2017). Dietary effects of poly-AfAY-hydroxybutyrate on the growth performance, digestive enzyme activity, body composition, mineral uptake and bacterial challenge of rainbow trout fry (Oncorhynchus mykiss). Aqua Nutri.; 23: 246-254.  https://doi.org/10.1111/anu.12386
  26. Nhan DT, et al. (2010). The effect of poly AfAY-hydroxybutyrate on larviculture of the giant freshwater prawn Macrobrachium rosenbergii. Aqua.; 302: 76-81.  https://doi.org/10.1016/j.aquaculture.2010.02.011
  27. Noga, E. J. (2000). Fish disease diagnosis and treatment (Iowa: Iowa State University Press). 
  28. Mabrok, Mahmoud & Algammal, Abdelazeem & Fathi, Mohamed & Tawfiek, Basma & Hozzein, Wael & el kazzaz, Waleed. (2020). Molecular Typing, Antibiogram and PCR-RFLP Based Detection of Aeromonas hydrophila Complex Isolated from Oreochromis niloticus. 
  29. Magnadottir B. (2006). Innate immunity of fish (overview). Fish Shellfish Immunol., v.20, p.137-151,.  https://doi.org/10.1016/j.fsi.2004.09.006
  30. Magdalena Lenny Situmorang, Peter De Schryver, Kristof Dierckens, Peter Bossier (2016). Effect of poly-β-hydroxybutyrate on growth and disease resistance of Nile tilapia Oreochromis niloticus juveniles, Veterinary Microbiology, Volume 182, 2016, Pages 44-49, ISSN 0378-1135, https://doi.org/10.1016/ j.vetmic.2015.10.024. 
  31. MAGNADOTTIR, B.; AUDUNSDOTTIR, S.S.; BRAGASON, B.T.H. et al. (2011). The acute phase response of Atlantic cod (Gadus morhua): Humoral and cellular responses. Fish Shellfish. Imunol., v.30, p.1124-1130.  https://doi.org/10.1016/j.fsi.2011.02.010
  32. MAQSOOD, S.; SAMOON, M.H.; SINGH, P. (2009). Immunomodulatory and growth promoting effect of dietary levamisole in Cyprinus carpio fingerlings against the challenge of Aeromonas hydrophila. Turk. J. Fish. Aquatic Sci., v.9, p.111-120. 
  33. MISRA, C.K.; DAS, B.K.; MUKHERJE, S.C.; PATTNAIK, P. (2006). Effect of multiple injections of bglucan on non-specific immune response and disease resistance in Labeo rohita fingerlings. Fish Shellfish Immunol., v.20, p.305-319.  https://doi.org/10.1016/j.fsi.2005.05.007
  34. MISRA, C.K.; DAS, B.K.; MUKHERJEE, S.C. (2009). Immune response, growth and survival of Labeo rohita fingerlings fed with levamisole supplemented diets for longer duration. Aquaculture Nutr., v.15, p.356-365.  https://doi.org/10.1111/j.1365-2095.2008.00600.x
  35. Miyazaki T, Kaige N: (1985). Comparative histopathology of Edwardsiellosis in fishes. Fish Pathol. 20: 219-227.  https://doi.org/10.3147/jsfp.20.219
  36. Mohanty, B. & Sahoo, P K. (2007). Edwardsiellosis in fish: a brief review. Journal of Biosciences. 32. 10.1007/s12038-007-0125-x. 
  37. MURRAY, C.K.; FLETCHER, T.C. (1976). The immunohistochemical localization of lysozyme in plaice (Pleuronectes platessa L.) tissues. J. Fish Biol., v.9, p.329-334, 1976.  https://doi.org/10.1111/j.1095-8649.1976.tb04681.x
  38. Park S P., Takashi Aoki1,2 and Tae Sung Jung1. (2012). Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Park et al. Veterinary Research 2012, 43:67 http://www.veterinaryresearch.org/content/43/1/67 
  39. Ponnusamy, Suguna & Ramesh, Binu & Periyasamy, Abirami & Saranya, Viswanathan & Kkani, Poornima & Veluchamy, Rajeswari & Shenbagarathai, Rajaiah. (2013). Immunostimulation by Polyhydroxybutyrate-hydroxyvalerate (PHB-HV) from Bacillus thuringiensis in Oreochromis mossambicus. Fish & shellfish immunology. 36. 10.1016/j.fsi.2013.10.012. 
  40. Quynh, Truong & Park, Seong Bin & Kim, Si Won & Lee, Jung & Im, Se & Lazarte, Jassy Mary & Seo, Jong & Lee, Woo-Jai & Kim, Jae & Jung, Tae Sung. (2016). MALDI-TOF MS-based identification of Edwardsiella ictaluri isolated from Vietnamese striped catfish (Pangasius Hypothalamus). Journal of veterinary science. 0;17(3):377-83. doi: 10.4142/jvs.2016.17.3.377 
  41. Prabu E, Rajagopalsamy CBT, Ahilan B, Jeevagan IJMA, Renuhadevi M. (2019). Tilapia-An Excellent Candidate Species for World Aquaculture: A Review. Annu Res Rev Biol. 31(3): 1-14.  https://doi.org/10.9734/arrb/2019/v31i330052
  42. Rattanachaikunsopon, P. and Phumkhachorn, P. (2010). Assessment of synergistic efficacy of carvacrol and cymene against Edwardsiella tarda in vitro and in Tilapia (Oreochromis niloticus). African Journal of Microbiology Research. 4, 420-425. 
  43. Sakai, Takamitsu & Yuasa, Kei & Sano, Motohiko & Iida, Takaji. (2009). Identification of Edwardsiella ictaluri and E. tarda by Species-Specific Polymerase Chain Reaction Targeted to the Upstream Region of the Fimbrial Gene. Journal of aquatic animal health. 21. 124-32. 10.1577/H08-061.1. 
  44. Sahoo PK, Mukherjee SC, Sahoo S.K. (1998). Aeromonas hydrophila versus Edwardsiella tarda: a pathoanatomical study in Clarias batrachus. J Aquacult. 6: 57-66. 
  45. Sakai T, Yuasa K, Sano M, Iida T. (2009). Identification of Edwardsiella ictaluri and E. tarda by species-specific polymerase chain reaction targeted to the upstream region of the fimbrial gene. J Aquat Anim Health 21, 124-132.  https://doi.org/10.1577/H08-061.1
  46. Schryver PD, et al. (2010). Poly-AfAY-hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass, Dicentrarchus labrax. Appl Microbiol Biotechnol; 86: 1535-1541. 
  47. Sihag, R.C. (2012). Probiotics: The New Ecofriendly Alternative Measures of Disease Control for Sustainable Aquaculture. Journal of Fisheries and Aquatic Science. 7. 72-103. 10.3923/jfas.2012.72.103. 
  48. Situmorang ML, De Schryver P, Dierckens K, Bossier P. (2016). Effect of poly-β-hydroxybutyrate on growth and disease resistance of Nile tilapia Oreochromis niloticus juveniles. Vet Microbiol. 182: 44-9. doi: 10.1016/j.vetmic.2015.10.024. Epub 2015 Oct 31. PMID: 26711027 
  49. Situmorang, M.L.; Dierckens, K.; Mlingi, F.T.; Van Delsen, B.; Bossier, P.(2014). Development of a bacterial challenge test for gnotobiotic Nile tilapia Oreochromis niloticus larvae. Dis. Aquat. Org. 109, 23-33.  https://doi.org/10.3354/dao02721
  50. Sui L, et al. (2012). Effect of poly-b-hydroxybutyrate on Chinese mitten crab (Eriocheir sinensis) larvae challenged with pathogenic Vibrio anguillarum. J Fish Dis; 35: 359-364.  https://doi.org/10.1111/j.1365-2761.2012.01351.x
  51. Thai TQ, et al. (2014). Poly-AfAY-hydroxybutyrate content and dose of the bacterial carrier for Artemia enrichment determine the performance of giant freshwater prawn larvae. Applied Micro and Biotech; 98: 5205-5215.  https://doi.org/10.1007/s00253-014-5536-7
  52. Wang, Xin & Wang, Qiyao & Xiao, Jingfan & Liu, Qin & Wu, Haizhen & Zhang, Yuanxing. (2010). Hemolysin EthA in Edwardsiella tarda is essential for fish invasion in vivo and in vitro and regulated by two-component system EsrA-EsrB and nucleoid protein Hha(Et). Fish & shellfish immunology. 29. 1082-91. 10.1016/j.fsi.2010.08.025.