DOI QR코드

DOI QR Code

Finite element analysis for acoustic and temperature characteristics of a piezoelectric HIFU transducer at 10 MHz

10 MHz용 압전 HIFU 트랜스듀서의 음향 및 온도 특성에 대한 유한요소해석

  • Jong-Ho Kim (Materials Digitalization Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Il-Gok Hong (Department of Energy Engineering, Hanyang University) ;
  • Ho-Yong Shin (Materials Digitalization Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Hyo-Jun Ahn (Department of Materials Science and Engineering, Gyeongsang National University) ;
  • Jong-In Im (Materials Digitalization Center, Korea Institute of Ceramic Engineering and Technology)
  • 김종호 (한국세라믹기술원 디지털소재혁신센터) ;
  • 홍일곡 (한양대학교 에너지공학과) ;
  • 신호용 (한국세라믹기술원 디지털소재혁신센터) ;
  • 안효준 (경상대학교 나노신소재공학과) ;
  • 임종인 (한국세라믹기술원 디지털소재혁신센터)
  • Received : 2023.05.03
  • Accepted : 2023.05.22
  • Published : 2023.06.30

Abstract

A high intensity focuses ultrasound (HIFU) is one of the emerging technologies in the biomedical field. The piezoelectric HIFU transducer is a device that utilizes the thermal energy generated by high ultrasound energy. Recently an operating frequency of the HIFU transducer is to expand above a 7 MHz. In this study, the acoustic pressures and temperature distributions in the tissue that generated by the HIFU transducer at 10 MHz were calculated with the finite element method. In addition, the pressure focusing characteristics of the device were analyzed. The geometrical variables are the piezomaterial thickness, lens shape, water height, and film thickness. The results shown that the acoustic pressure increased and saturated gradually when the height/radius (HL/RL) ratio of the lens increased. Moreover, the focal area was gradually decreases with HL/RL ratio of the lens. In case of the optimized HIFU transducer, the maximum pressure and temperature were analyzed about 19 MPa and 65℃ respectively. And the -3 dB focused distances in the axial and lateral direction are around 2.3 mm and 0.23 mm respectively.

압전 HIFU 트랜스듀서는 바이오 의료분야에 적용되고 있는 새로운 기술로 발생한 초음파 에너지를 열로 변환하여 사용하는 디바이스이다. 최근 HIFU 디바이스는 7 MHz 이상의 고 작동 주파수를 갖는 디바이스를 개발하는 추세이다. 본 논문에서는 유한요소법을 이용해 10MHz 작동주파수를 갖는 HIFU 트랜스듀서에 의해 발생된 tissue에서의 음압 및 온도분포를 계산하고, 압력의 focusing 특성 등을 분석하였다. HIFU의 형상변수로는 압전소재 두께, 렌즈 형상, 물 높이, 필름의 두께 등을 고려하였다. 그 결과, 디바이스의 발생 음압은 렌즈의 HL/RL 비가 증가함에 따라 증가하다 일정한 값에 도달하는 경향을 보이고 있다. 그러나 디바이스의 focusing 면적은 렌즈의 HL/RL 비가 증가함에 급격하게 감소하는 특성을 보이고 있다. 최적 형상을 갖는 HIFU 디바이스의 경우, 최대 음압 및 온도는 각각 19 MPa 및 65도 정도로 분석되었다. 또한 축방향 및 이와 수직한 방향에서 -3 d B 초점 거리는 각각 2.3 mm 및 0.23 mm 정도인 것으로 나타났다

Keywords

Acknowledgement

본 연구는 산업통산자원부 가상공학플랫폼 구축사업(과제번호: P0022336)의 지원으로 수행되었습니다.

References

  1. T. Zawada and T. Bove, "Strongly focused HIFU transducers with simultaneous optical observation for treatment of skin at 20 MHz", Ultrasound in Medicine & Biology 48 (2022) 1309.
  2. J. Joseph, B. Ma and B.T. Khuri-Yakub, "Applications of capacitive micromachined ultrasonic transducers: A comprehensive review", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 69 (2021) 456.
  3. G. Ter Haar, "HIFU tissue ablation: concept and devices", Therapeutic Ultrasound (2016) 3.
  4. C. Chang, K. Firouzi, K.K. Park, A.F. Sarioglu, A. Nikoozadeh, H.S. Yoon, S. Vaithilingam, T. Carver and B.T. Khuri-Yakub, "Acoustic lens for capacitive micromachined ultrasonic transducers", Journal of Micromechanics and Microengineering 24 (2014) 085007.
  5. J.L. MacGregor and E.L. Tanzi, "Microfocused ultrasound for skin tightening", Semin Cutan Med Surg. 32 (2013) 18.
  6. H.J. Kim, H.G. Kim, Z. Zheng, H.J. Park, J. H. Yoon, W. Oh, C.W. Lee and S.B. Cho, "Coagulation and ablation patterns of high-intensity focused ultrasound on a tissue-mimicking phantom and cadaveric skin", Lasers in Medical Science 30 (2015) 2251.
  7. D.R. Daum and K. Hynynen, "A 256-element ultrasonic phased array system for the treatment of large volumes of deep seated tissue", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 46 (1999) 1254.
  8. K. Hynynen, "Review of ultrasound therapy", 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No. 97CH36118) 2 (1997) 1305.
  9. A. Hacker, S. Chauhan, K. Peters, R. Hildenbrand, E. Marlinghaus, P. Alken and M.S. Michel, "Multiple highintensity focused ultrasound probes for kidney-tissue ablation", Journal of Endourology 19 (2005) 1036.
  10. D.R. Daum, N.B. Smith, R. King and K. Hynynen, "In vivo demonstration of noninvasive thermal surgery of the liver and kidney using an ultrasonic phased array", Ultrasound in Medicine & Biology 25 (1999) 1087.
  11. C.S. Ho, K.C. Ju, Y.Y. Chen and W.L. Lin, "A cylindrical phased-array ultrasound transducer for breast tumor thermal therapy", IEEE Ultrasonics Symposium 3 (2005) 1724.
  12. M. Malinen, T. Huttunen, K. Hynynen and J.P. Kaipio, "Simulation study for thermal dose optimization in ultrasound surgery of the breast", Medical Physics 31 (2004) 1296.
  13. L. Curiel, F. Chavrier, R. Souchon, A. Birer and J.Y. Chapelon, "1.5-D high intensity focused ultrasound array for non-invasive prostate cancer surgery", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 49 (2002) 231.
  14. G.T. Clement and K. Hynynen, "A non-invasive method for focusing ultrasound through the human skull", Physics in Medicine & Biology 47 (2002) 1219.
  15. S.J. Graham, L. Chen, M. Leitch, R.D. Peters, M.J. Bronskill, F.S. Foster, R.M. Henkelman and D.B. Plewes, "Quantifying tissue damage due to focused ultrasound heating observed by MRI", Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 41 (1999) 321.
  16. G. Kun and M. Wan, "Effects of fascia lata on HIFU lesioning in vitro", Ultrasound in Medicine & Biology 30 (2004) 991.
  17. D.N. Stephens, J. Foiret, S. Lucero, K.W. Ferrara, K. Shivkumar and P. Khuri-Yakub, "10 MHz catheter-based annular array for thermal strain guided intramural cardiac ablations", 2015 IEEE International Ultrasonics Symposium (IUS) (2015) 1.
  18. Y. Zhou and M. Wang, "Simulation of transrib HIFU propagation and the strategy of phased-array activation", Physics Procedia 70 (2015) 1119.
  19. H.Y. Shin, H.Y. Lee, I.G. Hong, J.H. Kim and J.I. Im, "Optimization study for material properties of piezoelectric material using parameter estimation method: Part I. polycrystal PZT ceramics", J. Korean Inst. Electr. Electron. Mater. Eng. 35 (2022) 470.
  20. R.L. O'leary, G. Smillie, G. Hayward and A.C.S. Parr, "CUE materials database", Centre for Ultrasonic Engineering (2002).
  21. Z. Li, Z. Han, X. Jian, W. Shao, Y. Jiao and Y. Cui, "Pulse-echo acoustic properties evaluation method using high-frequency transducer", Measurement Science and Technology 31 (2020) 125011.
  22. COMSOL Multiphysics® v. 6.0. Stockholm, Sweden: COMSOL AB; 2021.
  23. H. Jaffe, "Piezoelectric ceramics", Journal of the American Ceramic Society 41 (1958) 494.
  24. J.F. Nye, "Physical properties of crystals: their representation by tensors and matrices", (Oxford university press, 1985).
  25. H.H. Pennes, "Analysis of tissue and arterial blood temperatures in the resting human forearm", Journal of Applied Physiology 1 (1948) 93.
  26. G.R. Ter, R.L. Clarke, M.G. Vaughan and C.R. Hill, "Trackless surgery using focused ultrasound: Technique and case report", Minimally Invasive Therapy 1 (1991) 13.