DOI QR코드

DOI QR Code

과학기술 관련 사회쟁점(SSI) 기반 수업이 중학교 3학년 과학 학습부진 학생의 기초 학업성취도, 과학학습에 대한 태도 및 과학적 참여와 평생학습 역량에 미치는 효과

The Effects of Socioscientific Issue (SSI)-Based Instruction on Underachieving 9th-Grade Students: Achievement, Attitudes, and Scientific Participation and Lifelong Learning Competency

  • 투고 : 2022.06.10
  • 심사 : 2023.02.01
  • 발행 : 2023.04.30

초록

이 연구에서는 과학기술 관련 사회쟁점(SSI) 기반 과학 수업이 중학교 3학년 과학 학습부진 학생들에게 미치는 효과를 조사하였다. 연구를 위해 과학 교육과정과 연계된 2개의 SSI를 중심으로 총 7차시의 수업을 개발하여 실시하고, 그 효과를 진단하였다. 연구 자료는 광역시의 한 중학교 3학년 학생 185명을 대상으로 수집하였다. 그중 37명을 과학 학습부진 학생으로 판별하여 연구의 초점으로 하였다. 양적 자료는 과학성취, 태도 및 역량 측정에 대한 사전 및 사후 검사로 수집하였다. 정량적 데이터를 보완하기 위해 교사의 수업 관찰지, 일부 학생과의 면담을 통해 정성적 자료를 수집하였다. 정량적 자료 분석은 윌콕슨 부호순위 검정과 대응 표본 t 검정으로 진행하였다. 분석 결과 SSI 기반 수업이 과학 성취도에서는 학습부진 학생집단에 유의한 효과를 보이는 것으로 드러났지만 태도와 역량의 변화에는 유의한 영향이 없는 것으로 나타났다. 수업 관찰 자료는 학습부진 학생들이 SSI 기반 수업에 더 적극적으로 참여하는 모습을 보여줬으며, 학생의 면담에서 과학 학습부진 학생의 성취에 긍정적 영향을 미치는 수업의 성격을 밝힐 수 있었다. 이러한 연구 결과를 바탕으로 추가 연구 주제를 제안하였다.

In this study, we examined the effect of socioscientific issue (SSI) based science lessons on underachieving 9th-grade students. A total of seven lessons centered on two SSIs related to the national science curriculum were developed and implemented during the first semester of 2021. Data were collected from 185 9th-grade students in one middle school in a mid-sized city of South Korea. Among them, 37 were identified as achieving far below the standards (underachieving students hereafter). Quantitative data were collected from pre- and post-tests on basic science content and attitudes and competency measures. To supplement quantitative data, lesson observation notes were recorded, and student interviews with a selected number of students were conducted. The analysis of quantitative data was conducted through the Wilcoxon Signed Rank Test and paired t-tests. Qualitative data were analyzed to find reasons for changing attitudes. The findings showed that the SSI-based lessons were more effective on underachieving students than the others in enhancing basic academic achievement, while there was no significant effect on all in attitudes and competency. Lesson observation data showed that underachieving students were more engaged in SSI-based lessons than before. Student interviews demonstrated several reasons why they were engaged, suggesting the aspects of SSI-based lessons that facilitated underachieving students' learning. Further research topics are suggested.

키워드

참고문헌

  1. Ahn, Y., Lee, J., & Kim, D. (2020). 2019 National Academic Achievement Assessment Results-Middle School Science. Jincheon: Korea Institute for Curriculum and Evaluation.
  2. Allchin, D., & Zemplen, G. (2020). Finding the place of argumentation in science education: Epistemics and whole science. Science Education, 104(5), 907-933. https://doi.org/10.1002/sce.21589
  3. Davies, S., Rizk, J., Kim, A. Y., Sinatra, G. M., & Seyranian, V. (2017). Developing a STEM identity among young women: A social identity perspective. Review of Educational Research, 88(4), 331-365.
  4. Ha, M., Park, H., Kim, Y.-J., Kang, N.-H., Oh, P. S., Kim, M.-J., Min, J.-S., Lee, Y., Han, H.-J., Kim, M., Ko, S.-W., & Son, M.-H. (2018). Developing and applying the questionnaire to measure science core competencies based on the 2015 Revised National Science Curriculum. Journal of the Korean Association for Science Education, 38(4), 495-504.
  5. Jho, H., Yoon, H.-G., & Kim, M. (2014). The relationship of science knowledge, attitude and decision making on socio-scientific issues: The case study of students' debates on a nuclear power plant in Korea. Science & Education, 23(5), 1131-1151. https://doi.org/10.1007/s11191-013-9652-z
  6. Kim, Y., Baek, J., Lee, J., & Kim, D. (2021). 2020 National Academic Achievement Assessment Results-Middle School Science. Jincheon: Korea Institute for Curriculum and Evaluation.
  7. Kim, K., & Lee, H. (2017). Effects of Community-Based SSI Programs on Promoting Middl School Students' Understanding of Issues Character and Values ad Citizens: Focused on Fine Dust Issues. Journal of the Korean Association for Science Education, 37(6), 911-920.
  8. Kim, H., Lee, M., Lee, J., Lee, S., Lee, Y., Kwak, Y., Shin, Y., Kim, J., Park, S., Kim, K., Hwang, Y., & Kim. K. (2016). 2015 개정 교육과정에 따른 초중학교 과학과 평가기준 개발 연구 [Research and Development of the Assessment Standards of the 2015 Revised National Science Curriculum at the Primary and Middle School Levels] (CRC 2016-2-7). Seoul: Korea Institutes for Curriculum and Evaluation.
  9. Kim, N., & Park, H. (2017). Longitudinal interplay between self-determined motivation and achievement for underachieved children. The Journal of Humanities and Social Sciences 21, 8(2), 439-455
  10. Kolsto, S. D. (2000). Consensus projects: Teaching science for citizenship. International Journal of Science Education, 22(6), 645-664. https://doi.org/10.1080/095006900289714
  11. Kolsto, S. D., Bungum, B., Arnesen, E., Isnes, A., Kristensen, T., Mathiassen, K., Mestad, I., Quale, A., Tonning, A. S. V., & Ulvik, M. (2006), Science students' critical examination of scientific information related to socioscientific issues. Science Education, 90(4), 632-655.
  12. Klosterman, M. L., & Sadler, T. D. (2010). Multilevel assessment of scientific content knowledge gains associated with socioscientific issues-based instruction. International Journal of Science Education, 32(8), 1017-1043. https://doi.org/10.1080/09500690902894512
  13. Ku, J., Kim, S., Lee, H.-W., Cho, S., & Park, J. (2016). OECD Programme for International Students Assessment: An analysis of PISA 2015 Results. Seoul: Korea Institute for Curriculum and Evaluation.
  14. Kwak, Y., Kim C., Lee, Y., & Jeong, D. (2006). Investigation of Elementary and Secondary Students' Interest in Science. Journal of Korean Earth Society, 27(3), 260-268.
  15. Lee, H. (2018). What is SSI Education. Seoul: Pagyong Story.
  16. Lee, H., Choi, Y., & Ko, Y. (2014). Designing Collective Intelligence-based Instructional Models for Teaching Socioscientific Issues. Journal of the Korean Association for Science Education, 34(6), 523-534. https://doi.org/10.14697/jkase.2014.34.6.0523
  17. Lee, N., & Kang, N. H. (2018). Korean high school students' physics identities and STEM career aspirations. New Physics: Sae Mulli, 68(8), 899-908.
  18. Lee, J., Ryu, K., & Lee, S. (2021). Educational approach of 'socio-scientific issues' as convergence practice pursuing 'participation and action' in science education: Proposal of the 'actor-network theory' perspective. Culture & Convergence, 43(10), 765-787.
  19. Millar, R., & Osborne, J. (Eds.) (1998). Beyond 2000: Science education for the future (the report of a seminar series funded by the Nuffield Foundation). London, England: King's College London.
  20. Ministry of Education [MOE]. (2015). 2015 Revised Science Curriculum. Sejong, Korea: Author.
  21. Ministry of Education [MOE]. (2021). 2020 National Evaluation of Academic Achievement Results and Policy Response for Supporting Student Learning. Sejong, Korea: Author.
  22. NGSS Lead States (2013). Next Generation Science Standards: For States, By States. Washington, DC: Author.
  23. Oh, I., Kim, Y., & Yoo, J. (2011). Development and utilization of diagnostic questionnaire assessing characteristics of underachievement. Asian Journal of Education, 12(4), 145-170. https://doi.org/10.15753/AJE.2011.12.4.007007
  24. Park, D., Ko, Y., & Lee, H. (2018). Flipped learning in socioscientific issues instruction: Its impact on middle school students' key competencies and character development as citizens. Journal of the Korean Association for Science Education, 38(4), 467-480.
  25. Park, S., Ko, Y., & Lee, H. (2020). Video production as an instructional strategy for socioscientific issues: Its impact on middle school students' media literacy and understanding of SSI. Journal of Research in Curriculum & Instruction, 24(5), 511-522.
  26. Ratcliffe, M., & Grace, M. (2003). Science Education for Citizenship: Teaching Socioscientific Issues. Berkshire, England: Open University Press.
  27. Ryder, J. (2001). Identifying science understanding for functional scientific literacy. Studies in Science Education, 36(1), 1-44. https://doi.org/10.1080/03057260108560166
  28. Sadler, T. D. (2009). Situated learning in science education: Socio-scientific issues as contexts for practice. In Studies in Science Education (Vol. 45, Issue 1).
  29. Sadler, T. D., Amirshokoohi, A., Kazempour, M., & Allspaw, K. M. (2006). Socioscience and ethics in science classrooms: Teacher perspectives and strategies. Journal of Research in Science Teaching, 43(4), 353-376. https://doi.org/10.1002/tea.20142
  30. Seo, J., & Park, Y. (2022). Analysis of ordinances related to learning difficulties: Focusing on 4 regional ordinances in Seoul, Gyeonggi-do, Jeollanam-do and Jeju. Journal of Learner-Centered Curriculum and Instruction, 22(2), 705-719.
  31. Shamos, M. H. (1995). The Myth of Scientific Literacy. New Brunswick, NJ: Rutgers University Press.
  32. Song, J., Kang, S., Kwak, Y., Kim, D., Kim, S., Na, J., Do, J., Min, B., Park, S., Bae, S., Son, Y., Son, J., Oh, P., Lee, J., Lee, H., Lim, H., Jeong, D., Jeong, Y., Jeong, J., & Kim, J. (2019). Scientific Literacy for All Koreans: Korean Science Education Standards for the Next Generation. Seoul: Korea Foundation for the Advancement of Science & Creativity.
  33. Tsai, C.-Y., & Jack, B. M. (2019). Antecedent factors influencing ethics-related social and socio-scientific learning enjoyment. International Journal of Science Education, 41(9), 1139-1158. https://doi.org/10.1080/09500693.2019.1595215
  34. Yoo, J. E. (2022). A One Semester Course on Quantitative Research and Statistical Methods (2nd ed.). Seoul: Hakgisa.