• Title/Summary/Keyword: scientific participation and lifelong learning competency

Search Result 7, Processing Time 0.019 seconds

Eighth Grade Students' Perception of the Science Core Competencies (중학교 2학년 학생들의 과학 교과 역량에 대한 인식)

  • Kim, Kab Young;Kim, Jae Hyun;Jang, Nak Han;Kim, Hyun Jung
    • Journal of Science Education
    • /
    • v.44 no.2
    • /
    • pp.157-166
    • /
    • 2020
  • In this study, we analyzed the reflection degree of science core competencies, which is presented in second grade middle school science textbooks, and the perception of science core competencies of second year middle school students. To do this, we analyzed the frequency of presentation of science core competencies in middle school second grade textbooks, and surveyed 400 students from three schools in Chungnam area to find out their perception of science core competency. The survey consisted of 15 questions consisting of a five-step Likert scale and 5 ranking questions. The survey analyzed the responses of 327 people who responded faithfully and conducted a post-interview survey to interpret the survey results. The main findings are as follows: First, in the second grade middle school science textbook, the proportion of 'scientific thinking', 'scientific inquiry,' and 'scientific communication' is large, and the students are perceived to have a high proportion of 'scientific thinking,' 'scientific inquiry,' and 'scientific problem solving' in the textbook. Second, students recognize that the proportion of 'scientific inquiry' and 'scientific problem solving' in the evaluation conducted in school was high, and the proportion of 'scientific communication' and 'scientific participation and lifelong learning' was very low. Third, the most important competency in science that students perceive is the 'scientific problem solving,' the competency they wanted most from science is the 'scientific inquiry,' and the competency most needed to live in future society is the 'scientific communication.' Fourth, in the case of 'scientific participation and lifelong learning,' it is an important element of science literacy, but the proportion of consisting science textbooks is low, and students are not aware of the importance or necessity in science.

The Effect of Science Writing Classes based on Science Core Competencies in Elementary School (과학과 핵심역량 요소를 기반으로 한 초등학교 과학 글쓰기 수업의 효과)

  • Kim, Eun-Hye;Park, Jae-Keun
    • Journal of Korean Elementary Science Education
    • /
    • v.36 no.4
    • /
    • pp.346-355
    • /
    • 2017
  • The 2015 revised national science curriculum encourages students to cultivate the science core competencies such as scientific thinking, science process skills, scientific problem-solving ability, scientific communication skill, scientific participation and lifelong learning ability. To fill this purpose, we practiced science writing classes based on core competencies and examined the effect of its application. The target unit was 'weather and our life', 'acid and base', 'speed of an object', and 'structure and function of our body' in the fifth grade of elementary school. The results were as follows. First, it was proven that science writing activities based on core competencies did not help improving science process skills of learners. Second, it had a significant effect on the improvement of the learner's self-directed learning ability, in particular, owner spirit, meta cognition and information search. Third, this strategy for science writing changed learners' scientific attitude positively. The above-mentioned results show that this science writing classes can be applicable as one of effective methods in cultivating science core competencies.

The Effects of Socioscientific Issue (SSI)-Based Instruction on Underachieving 9th-Grade Students: Achievement, Attitudes, and Scientific Participation and Lifelong Learning Competency (과학기술 관련 사회쟁점(SSI) 기반 수업이 중학교 3학년 과학 학습부진 학생의 기초 학업성취도, 과학학습에 대한 태도 및 과학적 참여와 평생학습 역량에 미치는 효과)

  • Jin-Kyong Hur;Nam-Hwa Kang
    • Journal of Science Education
    • /
    • v.47 no.1
    • /
    • pp.11-23
    • /
    • 2023
  • In this study, we examined the effect of socioscientific issue (SSI) based science lessons on underachieving 9th-grade students. A total of seven lessons centered on two SSIs related to the national science curriculum were developed and implemented during the first semester of 2021. Data were collected from 185 9th-grade students in one middle school in a mid-sized city of South Korea. Among them, 37 were identified as achieving far below the standards (underachieving students hereafter). Quantitative data were collected from pre- and post-tests on basic science content and attitudes and competency measures. To supplement quantitative data, lesson observation notes were recorded, and student interviews with a selected number of students were conducted. The analysis of quantitative data was conducted through the Wilcoxon Signed Rank Test and paired t-tests. Qualitative data were analyzed to find reasons for changing attitudes. The findings showed that the SSI-based lessons were more effective on underachieving students than the others in enhancing basic academic achievement, while there was no significant effect on all in attitudes and competency. Lesson observation data showed that underachieving students were more engaged in SSI-based lessons than before. Student interviews demonstrated several reasons why they were engaged, suggesting the aspects of SSI-based lessons that facilitated underachieving students' learning. Further research topics are suggested.

Analysis of Earth Science Area among Competency-Based Elementary Science Gifted Education Programs (역량중심 초등과학 영재교육 프로그램 지구과학 영역 분석)

  • Kim, Ye-Bin;Kim, Soon-Shik
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.14 no.2
    • /
    • pp.136-145
    • /
    • 2021
  • The Gifted Education Program is re-constructured into core competency-based program in line with fourth industrial revolution, where talented people with comprehensive ability are required. Therefore, competency-based elementary science gifted education program which is provided from Gifted Education Database(GED) is developed in accordance with 2015 revised edition in science and 5 main core-abilities; scientific thinking ability, scientific investigation ability, scientific problem solving ability, scientific communication ability and scientific participation and lifelong learning ability. This research, which is provided from GED, is focused on earth science area among competency-based elementary science gifted education program and analyse quantitatively and qualitatively how science and core-ability is appeared in 3 programs developed in science area. This research can be another guideline when someone would like to use competency-based earth science gifted education program in gifted education. Also, the purpose of this research is to help suggesting a right direction for competency-based earth science gifted education program. The conclusion based on research problem is as follow; Firstly, in competency-based earth science gifted education program, influence rates of scientific communication ability and scientific thinking ability are highest, where influence rates of scientific investigation ability, scientific problem solving ability and scientific participation and lifelong learning ability are relatively low. Secondly, in competency-based earth science gifted education program, single activity may includes several core-abilities. Following research is quite meaningful in aspect of giving out the information to choose topic in core-ability when using competency-based earth science gifted education program in gifted education. Also by supplementing lowly-influenced ability in competency-based earth science gifted education program, it is expected for gifted students to build scientific core-ability.

Effects of e-PBL Program Using COVID-19 Related Data on Science Core Competence of High School Students in Biology Clubs (코로나19에 관한 데이터 활용 e-PBL 프로그램이 고등학교 생명과학 동아리 학생의 과학과 핵심역량에 미치는 효과)

  • Gill Woo Shin;Heeyoung Cha;Jisu Park
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.6
    • /
    • pp.583-594
    • /
    • 2023
  • This study aimed to develop an e-PBL program for high school students using COVID-19 related data and to investigate the impact of the developed program on students' science core competencies. For this, the e-PBL program was developed in consideration of the characteristics of learners and e-PBL, and a science core competency analysis framework. The program was applied to 26 general high school life science club students. Test for science department core competency was conducted before and after class by questionnaires and their conversation data during class was collected and analyzed by the framework. As a result of the study, the developed program was effective in improving five science core competencies. In the results of the analysis of the science core competency questionnaire, there were significant effects on scientific thinking ability, scientific inquiry ability and scientific problem solving ability. Unlike in the results of the questionnaires, the five sciences department core competencies appeared evenly in student discourse analysis. Among them, scientific communication ability and scientific participation and lifelong learning ability did not show significant results in the questionnaire, but in the discourse analysis results. Both abilities were the most evenly displayed competencies through the program stages. Through the study, we expect that the program is possibles to be useful instructional material to make high school students increase science core competencies.

Analysis of Achievement Standards, Activities, and Assessment Items in Integrated Science, Chemistry I, Chemistry II Textbooks on Science Core Competency: Focusing on Acid·Base·Neutralization and Oxidation·Reduction (통합과학, 화학 I, 화학 II의 성취기준과 교과서 활동 및 평가 문항의 과학과 핵심역량 분석: '산·염기·중화반응'과 '산화·환원'을 중심으로)

  • Ko, EunAh;Choi, Aeran
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.486-504
    • /
    • 2019
  • This study analyzed achievement standards in the 2015 Science Education Standards as well as activities and assessment items in the Integrated Science, Chemistry I, and Chemistry II textbooks using science core competencies and subcomponents. All five scientific core competencies, in order of scientific thinking capacity, scientific inquiry capacity, scientific communication capacity, scientific problem solving capacity, and scientific participation and lifelong learning capacity, were included in the achievement standards of Integrated Science. Scientific thinking capacity, scientific inquiry capacity, and scientific communication capacity were included in the achievement standards of Chemistry I. The achievement standards of Chemistry II only included scientific thinking capacity. All five scientific core competencies were involved in activities of Integrated Science, Chemistry I, and Chemistry II textbooks and the highest propotion was scientific thinking capacity and scientific inquiry capacity. All five scientific core competencies were involved in assessment items of Integrated Science, Chemistry I, and Chemistry II textbooks and the highest proportion was scientific thinking capacity.

Developing and Applying the Questionnaire to Measure Science Core Competencies Based on the 2015 Revised National Science Curriculum (2015 개정 과학과 교육과정에 기초한 과학과 핵심역량 조사 문항의 개발 및 적용)

  • Ha, Minsu;Park, HyunJu;Kim, Yong-Jin;Kang, Nam-Hwa;Oh, Phil Seok;Kim, Mi-Jum;Min, Jae-Sik;Lee, Yoonhyeong;Han, Hyo-Jeong;Kim, Moogyeong;Ko, Sung-Woo;Son, Mi-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.4
    • /
    • pp.495-504
    • /
    • 2018
  • This study was conducted to develop items to measure scientific core competency based on statements of scientific core competencies presented in the 2015 revised national science curriculum and to identify the validity and reliability of the newly developed items. Based on the explanations of scientific reasoning, scientific inquiry ability, scientific problem-solving ability, scientific communication ability, participation/lifelong learning in science presented in the 2015 revised national science curriculum, 25 items were developed by five science education experts. To explore the validity and reliability of the developed items, data were collected from 11,348 students in elementary, middle, and high schools nationwide. The content validity, substantive validity, the internal structure validity, and generalization validity proposed by Messick (1995) were examined by various statistical tests. The results of the MNSQ analysis showed that there were no nonconformity in the 25 items. The confirmatory factor analysis using the structural equation modeling revealed that the five-factor model was a suitable model. The differential item functioning analyses by gender and school level revealed that the nonconformity DIF value was found in only two out of 175 cases. The results of the multivariate analysis of variance by gender and school level showed significant differences of test scores between schools and genders, and the interaction effect was also significant. The assessment items of science core competency based on the 2015 revised national science curriculum are valid from a psychometric point of view and can be used in the science education field.