Acknowledgement
This research was supported by grant No. [14388] from the School of Medicine, Iran University of Medical Sciences (IUMS).
References
- A.A. Rose, et al., Glycoprotein nonmetastatic B is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer, Clin. Cancer Res. 16 (7) (2010) 2147-2156. https://doi.org/10.1158/1078-0432.CCR-09-1611
- A.A. Rose, et al., Osteoactivin promotes breast cancer metastasis to bone, Mol. Cancer Res. 5 (10) (2007) 1001-1014. https://doi.org/10.1158/1541-7786.MCR-07-0119
- G. Maric, et al., Glycoprotein non-metastatic b (GPNMB): A metastatic mediator and emerging therapeutic target in cancer, Onco Targets Ther 6 (2013) 839-852, https://doi.org/10.2147/OTT. Epub 2013/07/23.
- D.A. Yardley, et al., EMERGE: a randomized phase II study of the antibody-drug conjugate glembatumumab vedotin in advanced glycoprotein NMB-expressing breast cancer, J. Clin. Oncol. 33 (14) (2015) 1609-1619. https://doi.org/10.1200/JCO.2014.56.2959
- P.A. Ott, et al., Phase I/II study of the antibody-drug conjugate glembatumumab vedotin in patients with advanced melanoma, J. Clin. Oncol. 32 (32) (2014) 3659.
- V.A. Pollack, et al., Treatment parameters modulating regression of human melanoma xenografts by an antibody-drug conjugate (CR011-vcMMAE) targeting GPNMB, Cancer Chemother. Pharmacol. 60 (3) (2007) 423-435. https://doi.org/10.1007/s00280-007-0490-z
- X. Qian, et al., Pharmacologically enhanced expression of GPNMB increases the sensitivity of melanoma cells to the CR011-vcMMAE antibody-drug conjugate, Molecular oncology 2 (1) (2008) 81-93. https://doi.org/10.1016/j.molonc.2008.02.002
- R. Hernandez, et al., ImmunoPET imaging of tissue factor expression in pancreatic cancer with 89Zr-Df-ALT-836, J. Contr. Release 264 (2017) 160-168. https://doi.org/10.1016/j.jconrel.2017.08.029
- B.V. Marquez-Nostra, et al., Preclinical PET imaging of glycoprotein non-metastatic melanoma B in triple negative breast cancer: feasibility of an antibody-based companion diagnostic agent, Oncotarget 8 (61) (2017), 104303.
- W.E. Bolch, et al., MIRD pamphlet no. 21: a generalized schema for radiopharmaceutical dosimetry-standardization of nomenclature, J. Nucl. Med. 50 (3) (2009) 477-484. https://doi.org/10.2967/jnumed.108.056036
- A. Khorrami Moghaddam, et al., Determination of human absorbed dose of 201Tl (III)-DTPA-HIgG based on biodistribution data in rats, Radiat. Protect. Dosim. 141 (3) (2010) 269-274. https://doi.org/10.1093/rpd/ncq172
- R. Sparks, B. Aydogan, Comparison of the Effectiveness of Some Common Animal Data Scaling Techniques in Estimating Human Radiation Dose, Oak Ridge Associated Universities, TN (United States), 1999.
- S. Mattsson, L. Johansson, J. Liniecki, Radiation dose to patients from radiopharmaceuticals. Addendum 3 to ICRP publication 53. ICRP publication 106. Approved by the commission in October 2007, Ann. ICRP 38 (1-2) (2008) 1-197. https://doi.org/10.1016/j.icrp.2009.04.001
- R. Laforest, et al., (89) Zr] Trastuzumab: Evaluation of radiation dosimetry, safety, and optimal imaging parameters in women with HER2-positive breast cancer, Mol. Imaging Biol. 18 (2016) 952-959 ([CrossRef. CrossRef][Google Scholar]). https://doi.org/10.1007/s11307-016-0951-z
- S. Shanehsazzadeh, et al., Estimation of human effective absorbed dose of 67Ga-cDTPA-gonadorelin based on biodistribution rat data, Nucl. Med. Commun. 32 (1) (2011) 37-43. https://doi.org/10.1097/MNM.0b013e328340b916
- M. Naserpour, S. Mohammadi, S.P. Shirmardi, Estimation of human absorbed dose of 99mTc-MAA using MIRD method based on animal data and comparison with MCNP simulation code, Arch.Adv. Biosci. 12 (1) (2021) 1-6.
- M.A. Deri, et al., PET imaging with 89Zr: from radiochemistry to the clinic, Nucl. Med. Biol. 40 (1) (2013) 3-14. https://doi.org/10.1016/j.nucmedbio.2012.08.004
- Y. Janjigian, et al., Positron emission tomography (PET) with 89Zr-labeled trastuzumab (89Zr-trastuzumab): Monitoring HER2 expression in HER2-positive gastric cancer in vivo, J. Clin. Oncol. 29 (4_suppl) (2011) 35. -35.