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a b s t r a c t

One important issue in using radiopharmaceuticals as therapeutic and imaging agents is predicting
different organ absorbed dose following their injection. The present study aims at extrapolating
dosimetry estimates to a female phantom from the animal data of 89Zr radionuclide accumulation using
the Sparks-Idogan relationship. The absorbed dose of 89Zr radionuclide in different organs of the human
body was calculated based on its distribution data in mice using both MIRD method and the MCNP
simulation code. In this study, breasts, liver, heart wall, stomach, kidneys, lungs and spleen were
considered as source and target organs. The highest and the lowest absorbed doses were respectively
delivered to the liver (4.00E-02 and 3.43E-02 mGy/MBq) and the stomach (1.83E-03 and 1.66E-03 mGy/
MBq). Moreover, there was a good agreement between the results obtained from both MIRD and MCNP
methods. Therefore, according to the dosimetry results, [89Zr] DFO-CR011-PET/CT seems to be a suitable
for diagnostic imaging of the breast anomalies for CDX-011 targeting gpNMB in patients with TNBC in the
future.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Breast cancer is a prevalent malignancy among women world-
wide. In this regard, triple negative breast cancer (TNBC) accounts
for about 15% of all breast cancers. The cancerous cells in TNBC have
no estrogen, progesterone receptors and also can not provide too
much HER2 protein. TNBC cells differ from other types of breast
cancer cells in which they can proliferate and spread quicker,
limited treatment efficiency, and a more difficult to diagnose.
Glycoprotein non-metastatic B (gpNMB) is one of the most
commonly protein coding genes overexpressed in the TNBC pa-
tients and it is associated with the increase of metastatic cells [1,2].

In majority of normal cells, gpNMB is expressed intracellularly,
allowing greater selectivity for targetingmalignant cells through its
extracellular domain. Moreover, higher amount of gpNMB expres-
sion in TNBC is found to be related with the worse metastasis-free
survival and overall survival (OS) which makes it an attractive
target for treatment with antibody drug conjugate, glembatumu-
mab vedotin (CDX-O11) [3]. In this connection, Yardley et al. (2015)
reported that the increasing level of gpNMB expression associated
).
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with higher response rates to CDX-011 [4].
There is a growing consensus that [89Zr]DFO-CR011 can be an

appropriate diagnostic imaging agent for CDX-011 targeting gpNMB
in patients with TNBC [4,5]. In this regard, preclinical studies re-
ported the direct relationship between the level of gpNMB
expression and the effectiveness of gpNMB-targeted therapy using
CDX-011 [6,7].

The sensitivity of PET in conjunction with the properties of 89Zr
can provide the high-resolution images and quantitative value to
track the distribution of the antibody into its clearance from the
bloodstream [8]. Consequently, [89Zr]DFO-CR01 might be a non-
invasive and sensitive tool to evaluate the gpNMB expression in
clinical trials. In this regard, dosimetry measurements are of great
importance for 89Zr-DFO-CR011 to support clinical translation and
radiation safety. The present study aims at estimating the absorbed
dose in human body according to the ID/g% data obtained from the
biological distribution of 89Zr-DFO-CR011 in mice model. Absorbed
dose in human body was estimated using the MIRD (Medical In-
ternal Radiation Dose) method and MCNP5 (Mont Carlo Neutron
particle) code in adult female phantom.
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2. Materials and methods

At the first step, the accumulation activity %ID/g (Fig. 1) was
calculated using the data of mice model reported by Marquez-
Nostra et al. (2017) [9].

The time-integrated activity was then calculated using Equation
(1):

~AðrS:TDÞ¼
ðTD

0

~AðrS:tÞdt (1)

~AðrS:TDÞ shows the time-integrated activity of each organ at
time t (time after injecting the radiopharmaceutical). Time-
diagram of time-integrated activity in the organs was plotted. The
area under the diagram was also calculated [10,11]. Using the
Sparks-Idogan relationship, the activity accumulates from the rat
body to the human [12]:

~Ahumanorgan¼ ~Aanimalorgan �
Organmasshuman=Bodymasshuman
Organmassanimal=Bodymassanimal

(2)

The mean absorbed dose in the target organ was calculated by
the MIRD method:

DðrT :TDÞ¼Srs
~AðrS:TDÞ SðrT⟵rSÞ (3)

~AðrS:TDÞ is the time-integrated activity (or total number of nu-
clear transformations) in source tissue rS over dose-integration
period TD :

Factor S is the mean absorbed dose in the target organ (rT ) in the
source organ time-integrated activity (rS)) [10].

The absorbed dose proportional to the energy per unit mass can
be calculated using equation (4):

D∝ k
~A
m

E/D¼ k
~A
m

E (4)

Fig. 2 demonstrates the MIRD ORNL-Female phantom. The
absorbed dose was performed by the MCNP5 simulation code. In
this study, the MIRD-ORNL-Female and TALLY-*F8 phantoms were
used to calculate the cumulative activity as the absorbed dose for
each organ [13].
Fig. 1. Biodistribution of 89Zr-DFO-CR011 in different time points (Mean values
represent percent injected dose per gram (%ID/g)).

Fig. 2. MIRD ORNL-FEMALE phantom.
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Table 1
The Absorbed dose of different organs of the human body obtained using the MIRD method analysis and the MCNP5 simulation code.

Target Organ Absorbed Dose by MIRD method Absorbed Dose by MCNP code

(mGy/MBq) (mGy/MBq)

Breasts 6.24E-03 6.66E-03
Heart wall 1.18E-02 1.60E-02
Liver 4.00E-02 3.43E-02
Stomach 1.83E-03 1.66E-03
Kidneys 2.44E-02 2.86E-02
Lungs 6.51E-03 4.78E-03
Spleen 8.16E-03 3.10E-03
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3. Results and discussion

The present study simulated the injection of 1MBq 89Zr radio-
nuclide using MIRD method and MCNP code to determine the
absorbed dose in different human organs (Breasts, Heart wall, Liver,
Lungs, Kidneys, Spleen, and Stomach). The 89Zr radionuclide accu-
mulation activity was also calculated using the tumor mice data
(Fig. 1). Table 1 showes the comparison of absorbed dose between
the MIRD method analysis and the MCNP simulation code. Ac-
cording to the results, the liver absorbed the highest amount of
dose with 4.00E-02 and 3.43E-02 mGy/MBq. Moreover, the kidneys
and the heart wall came respectively at the second and third ranks.

In this regard, Laforest et al. (2016) calculated an absorbed dose
of different organs in women with HER2-Positive Breast Cancer
using several radionuclides such as 64Cu, 68Ga and 89Zr. They re-
ported 89Zr as the most favorable radionuclide for Monoclonal Anti
Bodies (MAB) imaging. They found that the liver absorbs the
highest amount of dose with 1.63 mGy/MBq whereas the brain
receives the lowest dose with 0.39 mGy/MBq [14]. Reinier Her-
nandez et al. (2009) used 89Zr-Df-ALT for PET imaging in pancreatic
cancer. They observed the highest radiolabeled uptake in the liver
with increasing radionuclide concentration from 10 mg to 50 mg
[8]. In 2011, Shanehsazzadeh et al. measured the absorbed dose of
67Ga-cDTPA-GnRH at time intervals (0.25, 0.5, 1, 2, 4, 24, and 48 h
post injections) using the MIRD method. The biodistribution of
67Ga-cDTPA-GnRH in rats showed high absorption in the breast and
low absorption in the muscle and blood. The results of the present
study showed that the highest absorbed dose was delivered to the
liver with 4.00E-02 and 3.43E-02mGy/MBq, while the lowest
absorbed dose was delivered to the stomach with 1.83E-03 and
1.66E-03mGy/MBq [15]. Naserpour et al. (2021) estimated the
absorbed dose of 99mTc-MAA in the human phantom using the
MIRD andMCNPmethods based on the animal biodistribution data.
They found that the highest amount of dose was absorbed in the
lungs (MIRD: 6.8E-2 mGy/MBq, MCNP: 6.32E-2 mGy/MBq). More-
over, there was a good agreement between the results obtained
from both the MIRD and MCNP methods for the lungs [16].

The use of 89Zr and 124I labeled with the chemical compound
DN30 in PET imaging was investigated, and it was found that
compared with 124I, 89Zr had a higher uptake in gastric cancer. 89Zr
was also introduced as a long-term effective positron emission for
development in the PET imaging systems based on therapeutic
anti-c-metBAs [17,18].

As mentioned, the highest absorbed dose was 4.00E-02 and
3.43E-02 mGy/MBq for the liver which was consistent with the
patient's clinical data whereas the lowest amount of dose was
absorbed in the stomach with 1.83E-03 and 1.66E-03 mGy/MBq. In
this regard, Marquez- Marquez-Nostra et al. (2017) similarly
extrapolated the human-absorbed dose from the animal data. The
difference between Marquez-Nostra et al. and the present study
relates to the fact that they used OLINDA/EXM while this study
relied on MIRD and MCNP for dosimetry [9]. Nevertheless, similar
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to the results, Marquez-Nostra et al. results demonstrated that the
liver absorbed the maximum amount of dose. The difference be-
tween MIRD and MCNP5 code results might be due to the differ-
ence between the measurement methods, human and mice tissues
geometry in the organs and distribution model of radiopharma-
ceuticals. MCNP5 simulation can provide dosimetric data with high
accuracy, especially in heterogenous tissues; however, it requires a
long simulation time to limit its usage in routine clinical applica-
tions. On the other hand, MIRD is a rapid and user-friendly method;
nevertheless, it suffers from low accuracy, especially in inhomo-
geneous organs and non-uniform activity distribution. In this re-
gard, the good agreement between the results of the MCNP5 and
MIRD methods can confirm the usefulness of MIRD in the clinic.
4. Conclusion

This study estimated the absorbed dose in the human phantom
model based on the mice biological data. The results showed that
the highest absorbed dose was delivered to the liver with 4.00E-02
and 3.43E-02 mGy/MBq while the stomach received the lowest
dose with 1.83E-03 and 1.66E-03 mGy/MBq. In addition, [89Zr]
DFO-CR011-PET/CT seems to be suitable for diagnostic imaging of
the breast anomalies for CDX-011 targeting gpNMB in patients with
TNBC in the future.
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