• Title/Summary/Keyword: SUPERFACT-1 irradiation experiment

Search Result 2, Processing Time 0.288 seconds

Assessment of INSPYRE-extended fuel performance codes against the SUPERFACT-1 fast reactor irradiation experiment

  • L. Luzzi;T. Barani;B. Boer;A. Del Nevo;M. Lainet;S. Lemehov;A. Magni;V. Marelle;B. Michel;D. Pizzocri;A. Schubert;P. Van Uffelen;M. Bertolus
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.884-894
    • /
    • 2023
  • Design and safety assessment of fuel pins for application in innovative Generation IV fast reactors calls for a dedicated nuclear fuel modelling and for the extension of the fuel performance code capabilities to the envisaged materials and irradiation conditions. In the INSPYRE Project, comprehensive and physics-based models for the thermal-mechanical properties of U-Pu mixed-oxide (MOX) fuels and for fission gas behaviour were developed and implemented in the European fuel performance codes GERMINAL, MACROS and TRANSURANUS. As a follow-up to the assessment of the reference code versions ("pre-INSPYRE", NET 53 (2021) 3367-3378), this work presents the integral validation and benchmark of the code versions extended in INSPYRE ("post-INSPYRE") against two pins from the SUPERFACT-1 fast reactor irradiation experiment. The post-INSPYRE simulation results are compared to the available integral and local data from post-irradiation examinations, and benchmarked on the evolution during irradiation of quantities of engineering interest (e.g., fuel central temperature, fission gas release). The comparison with the pre-INSPYRE results is reported to evaluate the impact of the novel models on the predicted pin performance. The outcome represents a step forward towards the description of fuel behaviour in fast reactor irradiation conditions, and allows the identification of the main remaining gaps.

Assessment of three European fuel performance codes against the SUPERFACT-1 fast reactor irradiation experiment

  • Luzzi, L.;Barani, T.;Boer, B.;Cognini, L.;Nevo, A. Del;Lainet, M.;Lemehov, S.;Magni, A.;Marelle, V.;Michel, B.;Pizzocri, D.;Schubert, A.;Uffelen, P. Van;Bertolus, M.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3367-3378
    • /
    • 2021
  • The design phase and safety assessment of Generation IV liquid metal-cooled fast reactors calls for the improvement of fuel pin performance codes, in particular the enhancement of their predictive capabilities towards uranium-plutonium mixed oxide fuels and stainless-steel cladding under irradiation in fast reactor environments. To this end, the current capabilities of fuel performance codes must be critically assessed against experimental data from available irradiation experiments. This work is devoted to the assessment of three European fuel performance codes, namely GERMINAL, MACROS and TRANSURANUS, against the irradiation of two fuel pins selected from the SUPERFACT-1 experimental campaign. The pins are characterized by a low enrichment (~ 2 wt.%) of minor actinides (neptunium and americium) in the fuel, and by plutonium content and cladding material in line with design choices envisaged for liquid metal-cooled Generation IV reactor fuels. The predictions of the codes are compared to several experimental measurements, allowing the identification of the current code capabilities in predicting fuel restructuring, cladding deformation, redistribution of actinides and volatile fission products. The integral assessment against experimental data is complemented by a code-to-code benchmark focused on the evolution of quantities of engineering interest over time. The benchmark analysis points out the differences in the code predictions of fuel central temperature, fuel-cladding gap width, cladding outer radius, pin internal pressure and fission gas release and suggests potential modelling development paths towards an improved description of the fuel pin behaviour in fast reactor irradiation conditions.