DOI QR코드

DOI QR Code

Study on heat transfer characteristics and structural parameter effects of heat pipe with fins based on MOOSE platform

  • Xiaoquan Chen (Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics) ;
  • Peng Du (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China) ;
  • Rui Tian (Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics) ;
  • Zhuoyao Li (Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics) ;
  • Hongkun Lian (Changzhou Therma Tech Co. LTD) ;
  • Kun Zhuang (Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics) ;
  • Sipeng Wang (Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics)
  • 투고 : 2022.06.20
  • 심사 : 2022.09.21
  • 발행 : 2023.01.25

초록

The space reactor is the primary energy supply for future space vehicles and space stations. The radiator is one of the essential parts of a space reactor. Therefore, the research on radiators can improve the heat dissipation power, reduce the quality of radiators, and make the space reactor smaller. Based on MOOSE multi-physics numerical calculation platform, a simulation program for the combination of heat pipe and fin at the end of heat pipe radiator is developed. It is verified that the calculation result of this program is accurate and the calculation speed is fast. Analyze the heat transfer characteristics of the combination with heat pipe and fin, and obtain its internal temperature field. Based on the calculation results, the influence of structural parameters on the heat dissipation power is analyzed. The results show that when the fin width is 0.25 m, fin thickness is 0.002 m, condensing section length is 0.5425 m and heat pipe radius is 0.014 m, the power-mass ratio is the highest. When the temperature is 700K-900K, the heat dissipation power increases 41.12% for every 100K increase in the operating temperature. Smaller fin width and thinner fin thickness can improve the power-mass ratio and reduce the radiator quality.

키워드

과제정보

This work is supported by the Fundamental Research Funds for the Central Universities (Grant No. NJ2022019-4).

참고문헌

  1. Yong Li, Cheng Zhou, Lv Zheng, etc. Research progress of propulsion technology for high power space nuclear power, [J].Propulsion technology 41 (1) (2020) 12-27.
  2. W. Zhang, C. Wang, R. Chen, et al., Preliminary design and thermal analysis of a liquid metal heat pipe radiator for TOPAZ-II power system[J], Ann. Nucl. Energy 97 (2016) 208-220. https://doi.org/10.1016/j.anucene.2016.07.007
  3. Zhiwen Dai, Tiancai Liu, Chenglong Wang, etc.Study on thermal-hydraulic characteristics of space nuclear reactor power supply, [J].Atom energy science and technology 53 (7) (2019) 1296-1309.
  4. M. Houts, Space Nuclear Power and Propulsion: Materials Challenges for the 21st Century[J], 2008.
  5. M.S. EL-Genk, J.M.P. Tournier, SAIRS" - scalable amtec integrated reactor space power system[J], Prog. Nucl. Energy 45 (1) (2004) 25-69. https://doi.org/10.1016/j.pnucene.2004.08.002
  6. L. Mason, C. Carmichael, A Small Fission Power System with Stirling Power Conversion for NASA Science Missions: Nuclear and Emerging Technologies for Space Meeting, NETS-2011[C], 2011.
  7. J.M. Tournier, M.S. EL-Genk, Reactor Lithium Heat Pipes for HP-STMCs Space Reactor Power System[J], Aip Conference Proceedings, 2004.
  8. D.I. Poston, The Heatpipe-Operated Mars Exploration Reactor (HOMER)[J], AIP Conference Proceedings, 2001.
  9. Richter R. 7 0 -s V 6 V a I M 90-1772 Thermody(namic aspects of heat pipe operation[J]).
  10. Y.A.L.E.G. Eastman, The heat pipe[J], Sci. Am. 218 (5) (1968) 38-47. https://doi.org/10.1038/scientificamerican0568-38
  11. C.H. Yang, Thermal Analysis of Heat-Pipe Radiators with a Rectangular Groove Wick Structure, Master's thesis[J], 1990.
  12. Xiu Zhang, Haochun Zhang, Xiuting Liu, et al., Thermal analysis and parameter optimization of a heat pipe radiator for space nuclear power [J], Journal of Astronautics (4) (2019) 7.
  13. Hao-chun Zhang, Xiu-ting Liu, Wei Qian-ming, et al., Analysis and optimization of heat pipe radiation radiator for MW space nuclear reactor system [J], Atomic Energy Sci. Technol. 54 (7) (2020) 7.
  14. Z. Tian, Y. Liu, C. Wang, et al., Single/multi-objective optimization and comparative analysis of liquid-metal heat pipe, Int. J. Energy Res. (2022) 1-19, https://doi.org/10.1002/er.8420.
  15. K.K. Panda, I.V. Dulera, A. Basak, Numerical simulation of high temperature sodium heat pipe for passive heat removal in nuclear reactors[J], Nucl. Eng. Des. 323 (nov) (2017) 376-385. https://doi.org/10.1016/j.nucengdes.2017.03.023
  16. Zhixing Tian, Liu Xiao, Chenglong Wang, et al., Study on heat transfer performance of high temperature potassium heat pipe at steady state [J], Atomic Energy Sci. Technol. 54 (10) (2020) 8.
  17. Yan Shen, Hong Zhang, Hui Xu, et al., Simulation and experimental analysis of heat transfer characteristics of alkali metal heat pipes [J], Journal of solar energy 37 (3) (2016) 7.
  18. q c Chen, Research on heat pipe technology and performance analysis code[J], Atomic Energy Sci. Technol. 54 (7) (2020) 1176-1184.
  19. Baohua Chai, Kaiwen Du, Wei Guangren, et al., Steady numerical analysis of potas sium heat pipe, [J]. Atomic energy science and technology 44 (5) (2010) 5.