• Title/Summary/Keyword: Radiator

Search Result 434, Processing Time 0.032 seconds

Development of Vapor Oil for Radiator Ein Press (방열핀 프레스용 베이퍼 오일 개발)

  • 전성철;조정희
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.129-133
    • /
    • 2000
  • Vapor oil fer radiator fm press in heat exchangers of air conditioners is carefully considered as the cooling performance can be affected by the residual vapor oil on the surface of radiator fin after fin press working. In this work, vapor oil for radiator fin press was developed in consideration of several properties such as physical characteristics, the rate of volatility, hazardous properties and material compatibility. In addition, it was confirmed that radiator fin press workability adopting the vapor oil and the cooling performance of air conditioner using the radiator fin were good.

  • PDF

An Improved Proton Recoil Telescope Detector for Fast Neutron Spectroscopy

  • Chung, Moon-Kyu;Kang, Hee-Dong;Park, Tong-Soo
    • Nuclear Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.191-201
    • /
    • 1973
  • For fast neutron spectroscopy in MeV region, a recoil proton telescope detector was designed and constructed so as to increase in detection efficiency without appreciable deterioration in energy resolution by adopting a special type of recoil proton radiator which is a combination of a ring-shaped vertical radiator and a cone-shaped horizontal radiator at a certain geometry. A neutron stopper was built in the detector system to minimize the background due to direct exposure of the Si(Li) detectors to primary incident neutrons. The detection efficiency and the energy resolution calculated at various neutron energies and geometries are given and these characteristics of the detector system were tested by 14.1 MeV neutrons. As the calculation predicted, the relative detection efficiency in case of the combined radiator system is almost 2.2 times of that for a single, ring-shaped vertical radiator system. The calculated energy resolution is 3.7% FWHM, whereas the measured resolution was 3.9% which means resolution broadening of approximately. 30% was resulted by introducing a combined radiator system into the telescope. Increase in background less than 40% was also observed.

  • PDF

Improvement of the Cooling Radiator System for Vehicles (차량용 라디에이터의 성능향상에 관한 연구)

  • Lee, Chang-Kyoo;Lee, Sang-Woo;Huh, Yun-Kun
    • Korean Journal of Agricultural Science
    • /
    • v.33 no.2
    • /
    • pp.107-114
    • /
    • 2006
  • An all-aluminum radiator made of aluminum was more excellent on environment friendliness, productivity, and cooling efficiency than the plastic tank radiator which was currently widely used in same size as above. A newly designed and manufactured radiator with all parts made of aluminium was ready to re-use without any disassembly process in recycle system so as to improve environment friendliness with low waste cost. Several manufacturing processes of the current plastic tank radiator such as O-ring inserting, and clinching of core to the tank, were eliminated on the manufacturing processes of the all-aluminium radiator, which would increase productivity and reduce production cost. Design criterion of all-aluminum radiator was presented by carrying out theoretical analysis of cooling capacity and there was no difference between analytical data and measurements. Cooling capacity of the all-aluminum radiator increased generally 13% up compared with the plastic radiator even though the pressure drop of air increased.

  • PDF

Deformation of the Tubes in Copper/Brass Radiator with Rise of Temperature and Pressure (온도 및 압력상승에 따른 동/황동 라디에터 튜브의 변형)

  • 정명진
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.16-20
    • /
    • 1993
  • The combined effect of increased pressure/temperature and the reduced material thicknesses act to increase the stress on the radiator componets. The design life of the radiator is influenced by the cyclic stresses and corrosion, which act to weaken the materials, radiator mechanical failure occurs when a tube or solder Joint ruptures, causing coolant loss or insufficient heat rejection. Therefore, in this study, through strain measurement of the tubes in copper/brass radiator, the strain distribution of the tubes in radiator as function of temperature and pressure is obtained.

  • PDF

Flexible Antenna Radiator Fabricated Using the CNT/PVDF Composite Film (CNT/PVDF 복합막을 이용한 유연소자용 안테나 방사체)

  • Kim, YongJin;Lim, Young Taek;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.196-200
    • /
    • 2015
  • In this paper, we fabricated flexible antenna radiator using the CNT/PVDF (carbon nanotube / polyvinylidene fluoride) composite film. We used polymer film as a matrix material for the flexible devices, and introduced CNTs for adding conductivity into the film resulting in obtaining performances of the antenna radiator. Spray coating method was used to form the CNT/PVDF composite radiator, and pattern formation of the radiator was done by shadow mask during the spray coating process. We investigated the electrical properties of the CNT/PVDF composite films with the CNT concentration, and also estimated the radiator performance. Finally we discuss the feasibility of the CNT/PVDF composite radiator for the flexible antenna.

Development of Simulation Program of Automotive Engine Cooling System (자동차 엔진냉각계의 해석 프로그램의 개발)

  • 배석정;이정희;최영기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.943-956
    • /
    • 2003
  • A numerical program has been developed for the simulation of automotive engine cooling system. The program determines the mass flow rate of engine coolant circulating the engine cooling system and radiator cooling air when the engine speed is adopted by appropriate empirical correlation. The program used the method of thermal balance at individual element through the model for radiator component in radiator analysis. This study has developed the program that predicts the coolant mass flow rate, inlet and outlet temperatures of each component in the engine cooling system (engine, transmission, radiator and oil cooler) in its state of thermal equilibrium. This study also combined the individual programs and united into the total performance analysis program of the engine cooling system operating at a constant vehicle speed. An air conditioner system is also included in this engine cooling system so that the condenser of the air conditioner faces the radiator. The effect of air conditioner to the cooling performance, e.g., radiator inlet temperature, of the radiator and engine system was examined. This study could make standards of design of radiator capacity using heat rejection with respect to the mass flow rate of cooling air. This study is intended to predict the performance of each component at design step or to simulate the system when specification of the component is modified, and to analyze the performance of the total vehicle engine cooling system.

Durability Analysis through the Radiation of Heat of a Laptop (노트북에서의 방열을 통한 내구성 해석에 관한 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.89-94
    • /
    • 2016
  • This study investigates the durability of the radiator and cooler of a laptop through a thermal analysis. In the result of this study, the maximum deformation happened at the part holding up the support stand at the radiator and cooler. The maximum thermal stress of the cooler was 60.939 Mpa, as low as that of the radiator. In addition, the safety factor of the cooler was 1.64 times as high as that of the radiator. The radiator of the laptop was less durable than the cooler. The result of this study could help with designing a laptop model with a durable radiator and cooler.

An Analysis of Engine Cooling using a Three-dimensional Radiator Model (3차원 방열기 모델을 이용한 엔진냉각 해석)

  • 이영림
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.10-17
    • /
    • 2001
  • The performance of a radiator is generally determined using a wind tunnel, in which the air velocity is uniform. However, when it is installed in a car, the distribution of the air velocity becomes nonuniform due to front-end openings, cross members, and horns etc., resulting in lower performance. In this study, several underhood flow simulations have been first performed to get flow rates and velocity distributions over the radiator. Secondly heat release rates are calculated by both a performance curve and a radiator model. Finally, using an engine cooling system simulator, radiator-top-tank temperature is predicted and the variations of heat release rate and radiator-top-tank temperature with nonuniformity of air velocity distributions are analyzed. The results show that the current engine cooling model successfully accounts for the nonuniformity effects that should be considered for higher accuracy in predicting engine cooling performance.

  • PDF

Eddy Current Testing for Radiator Tubes Surrounded by Cooling Fins

  • Nagata, Shoichiro;Tsubusa, Yoshiaki;Enokizono, Masato
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.276-280
    • /
    • 2011
  • This paper presents a non-destructive evaluation study on a radiator with cooling fins as a complex shaped specimen. Radiator structures are used in various heat exchangers, such as automobiles, air conditioners and refrigerators. An eddy current testing method, namely multi-frequency excitation and spectrogram method (MFES), was employed to detect a defect on the radiator tube surrounded by cooling fins. Overall, experimental results suggested that the influence of cooling fin is not as noticeable as that of the defect signals.

Spacecraft Radiator Design Optimization Approach of Combining Optimization Algorithm with Thermal Analysis (최적화알고리즘과 열해석을 통합한 위성방열판 설계의 최적화 방법에 관한 연구)

  • Kim, Hui-Kyung
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.24-29
    • /
    • 2013
  • A spacecraft radiator is a thermal control method to eject internally dissipated heat into the space generated from operation of unit boxes. The efficiency of thermal design may be improved by optimizing radiator design. In this paper, the optimization approach method of node-based radiator design was suggested which is to combine numerical thermal analysis with optimization algorithm. This method has meaning that it can be used practically to implement the spacecraft radiator design regardless of thermal analysis and optimization algorithm software and maintain the same basic concept of an ordinary radiator design approach based on node division of a thermal model. The overall analysis framework with thermal analysis and optimization algorithm would be presented.