DOI QR코드

DOI QR Code

Evaluation of strength characteristics of cement-stabilized soil using the electrical resistivity measurement

  • Kean Thai Chhun (Department of Research and Development, Techo Sen Institute of Public Works and Transport, Ministry of Public Work and Transport) ;
  • Chan-Young Yune (Department of Civil and Environmental Engineering, Gangneung-Wonju National University)
  • 투고 : 2022.12.02
  • 심사 : 2023.02.27
  • 발행 : 2023.05.10

초록

In this study, the compressive strength of cement stabilized soil was predicted using the electrical resistivity measurement. The effects of the water to cement (w/c) ratio and recovered Carbon Black (rCB) contents were examined. A series of electrical resistivity and compressive strength tests were conducted on two types of stabilized soil after 28 days of curing. Multiple nonlinear regression (MNLR) analysis was used to evaluate the relationship between the compressive strength and the electrical resistivity in terms of the rCB, Cu (uniformity coefficient), and w/c ratio. The results showed that the w/c ratio and Cu have a strong influence on the compressive strength and electrical resistivity of the cement stabilized soil compared to the rCB content. The use of a small amount of rCB led to a decrease in the void space in the specimen and was attributed to the increase strength and decrease electrical resistivity. A high w/c ratio also induced a low electrical resistivity and compressive strength, whereas 3% rCB in the cemented soil provided the optimum strength for all w/c ratios. Finally, a prediction equation for the compressive strength using the electrical resistivity measurement was suggested based on its reliability, time effectiveness, non-destructiveness, and cost-effectiveness.

키워드

과제정보

This research was supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 22-SCIP-C151438-04) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A1A03044326). We gratefully acknowledge Mr. Heung-Seok Cho and Mr. Panyabot Kaothon for their support of this project.

참고문헌

  1. Aderibigbe, D.A., Akeju, T.A.I. and Orangun, C.O. (1985), "Optimal water/cement ratios and strength characteristics of some local clay soils stabilized with cement", Mater. Struct., 18, 103-108. https://doi.org/10.1007/BF02473376.
  2. Al-Dahawi. A., Sarwary, M.H., O zturk, O., Yildirim, G., Akin, A., Sahmaran, M. and Lachemi, M. (2016), "Electrical percolation threshold of cementitious composites possessing self-sensing functionality incorporating different carbon-based materials", Smart Mater. Struct., 25(10), 105005. https://doi.org/10.1088/0964-1726/25/10/105005.
  3. Anagnostopoulos, C.A. and Chatziangelou, M. (2018), "Compressive strength of cement stabilized soils. A new statistical model", Elect. J. Geotech. Eng., 13, 1-10.
  4. Ates, A. (2013), "The effect of polymer-cement stabilization on the unconfined compressive strength of liquefiable soils", Int. J. Poly. Sci., 2013, https://doi.org/10.1155/2013/356214.
  5. ASTM D 854-14 (2014), Standard test method for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken, 1-8.
  6. ASTM D 421-85 (2007), Standard practice for dry preparation of soil samples for particle-size analysis and determination of soil constants (Withdrawn 2016). ASTM International, West Conshohocken, 1-2.
  7. ASTM D 2487-11 (2011), Classification of soils for engineering purposes (Unified soil classification system). ASTM International, West Conshohocken, 1-12.
  8. ASTM D 4253-14 (2014), Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM International, West Conshohocken, 1-14.
  9. ASTM D 4254-14 (2014), Standard test method for minimum index density and unit weight of soils and calculation of relative density. ASTM International, West Conshohocken, 1-9.
  10. ASTM G 187-05 (2005), Standard test method for measurement of soil resistivity using two-electrode soil box method. ASTM International, West Conshohocken, 1-4.
  11. ASTM C 109 / C109M-16a (2016), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, West Conshohocken, 1-10.
  12. Azarsa, P. and Gupta, R. (2017), "Electrical resistivity of concrete for durability evaluation: a review", Adv. Mater. Sci. Eng., 2017, 1-30. https://doi.org/10.1155/2017/8453095.
  13. Biswal, D.R., Sahoo, U.C. and Dash, S.R. (2020), "Nondestructive strength and stiffness evaluation of cement-stabilised granular lateritic soils", Road Mater. Pav Des., 21(3), 835-849. https://doi.org/10.1080/14680629.2018.1511458.
  14. Cardoso, R. (2017), "Influence of water-cement ratio on the hydraulic behavior of an artificially cemented sand", Geotech. Geol. Eng., 35, 1513-1527. https://doi.org/10.1007/s10706-017-0190-3
  15. Chen, L., Du, Y., Liu, S. and Jin, F. (2011), "Evaluation of cement hydration properties of cement-stabilized lead-contaminated soils using electrical resistivity measurement", J. Haz. Toxic Radio Waste, 15, 312-320. https://doi.org/10.1061/(ASCE)HZ.1944-8376.0000073.
  16. Chenari, R.J., Fatahi, B., Ghorbani, A. and Alamoti, M.N. (2018), "Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash", Geomech. Eng., 14(6), 533-544. https://doi.org/10.12989/gae.2018.14.6.533.
  17. Chhun, K.T., Choo, H.W., Kaothon, P. and Yune, C.Y. (2020), "Experimental study on strength behavior of cement-stabilized sand with recovered carbon black", Geomech. Eng., 23(1), 31-38. https://doi.org/10.12989/gae.2020.23.1.031.
  18. Chew, S.H., Kamruzzaman, A.H.M. and Lee, F.H. (2004), "Physicochemical and engineering behavior of cement treated clays", J. Geotech. Geoenviron. Eng., 130, 696-706. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(696).
  19. Choobbasti, A.J., Ghodrat, H., Vahdatirad, M.J., Firouzian, S., Barari, A., Torabi, M. and Bagherian, A. (2010), "Influence of using rice husk ash in soil stabilization method with lime", Front. Ear. Sci. Chi., 4, 471-480. https://doi.org/10.1007/s11707-010-0138-x.
  20. Consoli, N.C., Cruz, R.C., Floss, M.F. and Festugato, L. (2009), "Parameters controlling tensile and compressive strength of artificially cemented sand", J. Geotech. Geoenviron. Eng., 136, 759-763. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000278.
  21. Consoli, N.C., Cruz, R.C. and Floss, M.F. (2011), "Variables controlling strength of artificially cemented sand: influence of curing time", J. Mater. Civil Eng., 23, 692-696. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000205.
  22. Dehghanpour, H., Yilmaz, K. and Ipek, M. (2019), "Evaluation of recycled nano carbon black and waste erosion wires in electrically conductive concretes", Constr. Build. Mater., 221, 109-121. https://doi.org/10.1016/j.conbuildmat.2019.06.025.
  23. Dipova, N. (2019), "Nondestructive testing of stabilized soils and soft rocks via needle penetration", Perio Poly Civ. Eng., 62, 539-544. https://doi.org/10.3311/PPci.11874
  24. Gupta, D. and Kumar, A. (2016), "Strength characterization of cement stabilized and fiber reinforced clay-pond ash mixes", Int. J. Geosyn. Ground Eng., 2, 1-11. https://doi.org/10.1007/s40891-016-0069-z.
  25. Haeri, S.M., Hamidi, A., Hosseini, S.M., Asghari, E. and Toll, D.G. (2006), "Effect of cement type on the mechanical behavior of a gravely sand", Geotech. Geolo. Eng., 24, 335-360. https://doi.org/10.1007/s10706-004-7793-1.
  26. Hu, J., Vennapusa, P.K., White, D.J. and Beresnev, I. (1991), "Pavement thickness and stabilised foundation layer assessment using ground-coupled GPR", Nondes Test. Eval., 31, 267-287. https://doi.org/10.1080/10589759.2015.1111890.
  27. Huang, J.T. and Airey, D.W. (1998), "Properties of artificially cemented carbonate sand", J. Geotech. Geoenviron. Eng., 124, 492-499. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(492).
  28. Jauberthie, R., Rendell, F., Rangeard, D. and Molez, L. (2010), "Stabilization of estuarine silt with lime and/or cement", Appl. Clay Sci., 50, 395-400. https://doi.org/10.1016/j.clay.2010.09.004.
  29. Liu, S.Y., Du, Y.J., Han, L.H. and Gu, M.F. (2008), "Experimental study on the electrical resistivity of soil-cement admixtures", Environ. Geol., 54, 1227-1233. https://doi.org/10.1007/s00254-007-0905-5.
  30. Lee, J.K. and Shang, J.Q. (2011), "Influencing factors on electrical conductivity of compacted kaolin clay", Geomech. Eng., 3(2), 131-151. https://doi.org/10.12989/gae.2011.3.2.131.
  31. Liu, S.Y., Du, Y.J., Han, L.H. and Gu, M.F. (2008), "Experimental study on the electrical resistivity of soil-cement admixtures", Environ. Geol, 54(6), 1227-1233. https://doi.org/10.1007/s00254-007-0905-5.
  32. Li, H., Xiao, H. and Ou, J. (2006), "Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites", Cement Concrete Compos., 289, 824-828. https://doi.org/10.1016/j.cemconcomp.2006.05.004.
  33. Lin, V.W.J., Li, M., Lynch, J.P. and Li, V.C. (2011), "Mechanical and electrical characterization of self-sensing carbon black ECC", Proceedings of the Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security, San Diego, California, United States. 7-10 March. https://doi.org/10.1117/12.880178.
  34. Moon, S., Vinoth, G., Subramanian, S., Kim, J. and Ku, T. (2020), "Effect of fine particles on strength and stiffness of cement treated sand", Granular Matter, 22, 1-13. https://doi.org/10.1007/s10035-019-0975-6.
  35. Motamedi, S., Song, K. and Hashim, R. (2015), "Prediction of unconfined compressive strength of pulverized fuel ash-cement-sand mixture", Mater. Struct., 48, 1061-1073. https://doi.org/10.1617/s11527-013-0215-1.
  36. Mahedi, M., Cetin, B. and White, D.J. (2018), "Performance evaluation of cement and slag stabilized expansive soils", Transport. Res. Rec., 2672(52), 164-173. https://doi.org/10.1177/0361198118757439
  37. Mochida, Y., Sakurai, Y., Indra, H. and Karimi, A.L. (2017), "Study on strength estimation of soil cement used in the embedded pile method by electrical resistivity measurement", Proceedings of the International Conference on Building Materials and Materials Engineering, Lyon, France. 21-23 September 2017. https://doi.org/10.1088/1757-899X/264/1/012001.
  38. Okamoto, P.A., Bock, B.T. and Nussbaum, P.J. (1991), "Nondestructive tests for determining compressive strength of cement-stabilized soils", Transport. Res. Rec., 1295, 1-9.
  39. Salamatpoor, S., Jafarian, Y. and Hajiannia, A. (2018), "Physical and mechanical properties of sand stabilized by cement and natural zeolite", Eur. Phys. J. Plus, 133, 1-13. https://doi.org/10.1140/epjp/i2018-12016-0.
  40. Tugume, B., Owani, I., Jjuuko, S. and Kalumba, D. (2018), "Performance of lateritic soils stabilized with both crushed rock aggregates and carbon black as a pavement base layer", Proceeding of the 8th International Congress on Environmental Geotechnics, Hangzhou, China. 28 October-1 November 2018.
  41. Seladji, S., Cosenza, P., Tabbagh, A., Ranger, J. and Richard, G. (2010), "The effect of compaction on soil electrical resistivity: a laboratory investigation", Eur. J. Soil Sci., 61, 1043-1055. https://doi.org/10.1111/j.1365-2389.2010.01309.x.
  42. Vincent, N.A., Shivashankar, R., Lokesh, K.N. and Jacob, L.M. (2017), "Laboratory electrical resistivity studies on cement stabilized soil", Int. Scho Res Not., 8970153, 1-15. https://doi.org/10.1155/2017/8970153.
  43. Wei, X., Xiao, L. and Li, Z. (2012), "Prediction of standard compressive strength of cement by the electrical resistivity measurement", Constr. Build. Mater., 31, 341-346. https://doi.org/10.1016/j.conbuildmat.2011.12.111.
  44. Wei, X. and Ku, T. (2020), "New design chart for geotechnical ground improvement: characterizing cement-stabilized sand", Acta Geotech., 15, 999-1011. https://doi.org/10.1007/s11440-019-00838-2.
  45. Yu, X. and Drnevich, V.P. (2004), "Time domain reflectometry for compaction control of stabilized soils", Transport. Res. Rec., 1868, 14-22. https://doi.org/10.3141%2F1868-02. https://doi.org/10.3141%2F1868-02
  46. Zhang, D., Chen, L. and Liu, S. (2012), "Key parameters controlling electrical resistivity and strength of cement treated soils", J. Cen S Univ., 19, 2991-2998. https://doi.org/10.1007/s11771-012-1368-8.
  47. Zhang, D., Cao, Z., Fan, L., Liu, S. and Liu, W. (2014), "Evaluation of the influence of salt concentration on cement stabilized clay by electrical resistivity measurement method", Eng. Geol., 170, 80-88. https://doi.org/10.1016/j.enggeo.2013.12.010.
  48. Zhou, F., Sun, W., Shao, J., Kong, L. and Geng, X. (2020), "Experimental study on nano silica modified cement base grouting reinforcement materials", Geomech. Eng., 20(1), 67-73. https://doi.org/10.12989/gae.2020.20.1.067.