DOI QR코드

DOI QR Code

Study on selection and basic specifications design of shield TBM for power cable tunnels

터널식 전력구 쉴드TBM 선정 및 기본설계 사양 제시에 관한 연구

  • Jung Joo Kim (Transmission & Substation Laboratory, KEPCO Research Institute, KEPCO) ;
  • Ji Yun Lee (Transmission & Substation Laboratory, KEPCO Research Institute, KEPCO) ;
  • Hee Hwan Ryu (Transmission & Substation Laboratory, KEPCO Research Institute, KEPCO) ;
  • Ju Hwan Jung (Transmission & Substation Laboratory, KEPCO Research Institute, KEPCO) ;
  • Suk Jae Lee (Transmission & Substation Construction Department, Structure & Construction Team, KEPCO) ;
  • Du San Bae (Transmission & Substation Laboratory, KEPCO Research Institute, KEPCO)
  • 김정주 (한전 전력연구원 송변전연구소) ;
  • 이지윤 (한전 전력연구원 송변전연구소 ) ;
  • 류희환 (한전 전력연구원 송변전연구소) ;
  • 정주환 (한전 전력연구원 송변전연구소) ;
  • 이석재 (한전 송변전건설단 구조건설실) ;
  • 배두산 (한전 전력연구원 송변전연구소)
  • Received : 2023.04.03
  • Accepted : 2023.05.18
  • Published : 2023.05.31

Abstract

Power cable tunnels is one of the underground structures meant for electricity transmission and are constructed using shield TBM method when transitting across urban and subsea regions. With the increasing shaft depth for tunnels excavation when the shield TBM excavated the rock mass, the review of selecting closed-type shield TBM in rocks becomes necessary. A simplified shield TBM design method is also necessary based on conventional geotechnical survey results. In this respect, design method and related design program are developed based on combined results of full-scale tests, considerable amount of accumulated TBM data, and numerical simulation results. In order to validate the program results, excavation data of a completed power cable tunnel project are utilized. Thrust force, torque, and power of shield TBM specification are validated using Kernel density concept which estimates the population data. The robustness of design expertise is established through this research which will help in stable provision of electricity supply.

터널식 전력구는 지중으로 전력을 공급하기 위한 구조물 중 하나이며, 도심지 및 해저구간을 통과하는 구간에 쉴드TBM 공법을 활용하여 안정적으로 건설을 추진한다. 전력구 건설의 경우에는 수직구 심도가 깊어 주로 암반지반을 굴착하며, 암반대상 밀폐형 쉴드TBM 선정에 대한 고찰이 필요하였다. 또한, 지반조사 보고서 결과를 바탕으로 범용적이고, 간단한 설계방법이 필요하였다. 이에 실대형 굴진시험, 누적 굴진데이터, 수치해석을 종합하여 쉴드TBM 설계방법과 관련 프로그램을 개발하였다. 프로그램 결과에 대해 검증을 수행하고자 준공된 전력구 1개 현장의 굴진데이터를 활용하였다. 굴진데이터의 모집단을 추정하기 위해 커널밀도추정 방법을 도입하여 추력, 토크, 동력의 기본사양에 대해 검증을 완료하였다. 본 연구결과를 통해 쉴드TBM 설계업무 전문성 강화 및 안정적 전력공급의 사용자 편익증대를 기대할 수 있다.

Keywords

Acknowledgement

본 연구는 한국전력공사 자체연구개발 과제(R22SA01 및 R18SA04) '전력구 공사 안전확보를 위한 디스크커터 마모측정 및 수명예측 기술 개발'의 지원으로 수행되었습니다. 연구지원에 감사드립니다.

References

  1. Bruland, A. (2000), Hard rock tunnel boring: the boring process, Ph.D. Dissertation, Department of Building and Construction Engineering, Norwegian University of Science and Technology, pp. 1-86. 
  2. DAUB-Working Group (2022), Recommendations for the selection of Tunnel Boring Machines, German Tunnelling Committee (ITA-AITES), pp. 16-55. 
  3. Jeong, J.C. (2020), "Suitability analysis of optimal PM monitoring stations using kernel density function and PCA", The Korea Spatial Planning Review, Vol. 105, pp. 3-14.  https://doi.org/10.15793/KSPR.2020.105..001
  4. Kang, Y.J., Hong, J.M., Lim, O.K., Noh, Y.J. (2017), "Reliability analysis using parametric and nonparametric input modeling methods", Journal of the Computational Structural Engineering Institute of Korea, Vol. 30, No. 1, pp. 87-94.  https://doi.org/10.7734/COSEIK.2017.30.1.87
  5. Kim, J.J., Kim, K.Y., Ryu, H.H., Jung, J.H., Hong, S.Y., Jo, S.A., Bae, D.S. (2020b), "Development of a TBM advance rate model and its field application based on full-scale shield TBM tunneling tests in 70 MPa of artificial rock mass", KEPCO Journal on Electric Power and Energy, Vol. 6, No. 3, pp. 305-313.  https://doi.org/10.18770/KEPCO.2020.06.03.305
  6. Kim, J.J., Ryu, H.H., Kim, K.Y., Hong, S.Y., Jung, J.H., Bae, D.S. (2020c), "Development of penetration rate model and optimum operational conditions of shield TBM for electricity transmission tunnels", Journal of Korean Tunnelling and Underground Space Association, Vol. 22, No. 6, pp. 623-641.  https://doi.org/10.9711/KTAJ.2020.22.6.623
  7. Kim, K.H., Kim, H., Kim, S.C., Kan, S.O. (2021), "Case study for technical evaluation and check list to decision of optimized TBM", Journal of Korean Tunnelling and Underground Space Association, Vol. 23, No. 6, pp. 385-392.  https://doi.org/10.9711/KTAJ.2021.23.6.385
  8. Kim, K.Y., Kim, J.J., Ryu, H.H., Rehman, H., Jafr, T.H., Yoo, H.K., Ha, S.G. (2020d), "Estimation method for TBM cutterhead drive design based on full-scale tunneling tests for application in utility tunnels", Applied Sciences, Vol. 10, No. 15, pp. 1-20.  https://doi.org/10.3390/app10155187
  9. Kim, K.Y., Ryu, H.H., Jo, S.A., Kim, J.J., Hong, S.Y., Jung, J.H., Bae, D.S. (2020a), "Prediction of TBM performance based on full-scale 3.54m shield TBM tunnelling tests in artificial homogeneous rock mass conditions", Proceedings of the ITA-AITES World Tunnel Congress and 46th General Assembly, Kuala Lumpur, Malaysia, pp. 1315-1321. 
  10. Lee, S.Y., Song, K.I., Jung, J.H. (2020), "A numerical study on the optimum spacing of disc cutters considering rock strength and penetration depth using discrete element method", Journal of Korean Tunnelling and Underground Space Association, Vol. 22, No. 4, pp. 383-399.  https://doi.org/10.9711/KTAJ.2020.22.4.383
  11. Ministry of Trade, Industry and Energy (2023), 10th Basic plan for electricity supply and demand, Report 2023-036, Korea, pp. 13-31. 
  12. Oh, J.G., Sagong, M. (2014), "Study on the selection of TBM in consideration of field conditions", Journal of Korean Tunnelling and Underground Space Association, Vol. 16, No. 2, pp. 125-133.  https://doi.org/10.9711/KTAJ.2014.16.2.125
  13. Rosenblatt, M. (1956), "Remarks on some nonparametric estimates of a density function", The Annals of Mathematical Statistics, Vol. 27, No. 3, pp. 832-837.  https://doi.org/10.1214/aoms/1177728190
  14. Silverman, B.W. (1988), "Density estimation for statistics and data analysis", Journal of the American Statistical Association, Vol. 83, No. 401, JSTOR, pp. 269-270.  https://doi.org/10.2307/2288956
  15. Xiang, Z., Yu, X., Al-Absi, A.A., Kang, D.K. (2014), "Naive Bayes approach in kernel density estimation", Proceedings of the Korea Institute of Information and Communication Engineering Conference, Yeongju, pp. 76-78.