DOI QR코드

DOI QR Code

고온 고분자 연료전지를 이용한 데이터 센터용 CCHP 시스템의 에너지 절감 효과

Energy Saving Effect of CCHP System Using High Temperature Polymer Electrolyte Fuel Cell for Data Centers

  • 함성현 (한국에너지기술연구원 연료전지연구실) ;
  • 강태성 (한국에너지기술연구원 연료전지연구실) ;
  • 이원용 (한국에너지기술연구원 연료전지연구실) ;
  • 김민진 (한국에너지기술연구원 연료전지연구실)
  • SEONGHYEON HAM (Fuel Cell Laboratory, Korea Institute of Energy Research) ;
  • TAESEONG KANG (Fuel Cell Laboratory, Korea Institute of Energy Research) ;
  • WON-YONG LEE (Fuel Cell Laboratory, Korea Institute of Energy Research) ;
  • MINJIN KIM (Fuel Cell Laboratory, Korea Institute of Energy Research)
  • 투고 : 2023.02.21
  • 심사 : 2023.04.06
  • 발행 : 2023.04.28

초록

Data centers not only consume significant electricity to operate IT equipment, but also use a lot of electricity to cool the heat generated by IT equipment. The waste heat of a high-temperature polymer electrolyte fuel cell (HT-PEFC) is capable of producing cooling , so it can be effectively applied to data centers that require cooling throughout the year. The energy-saving effects of the proposed combined cooling, heat and power (CCHP) system using HT-PEFC. That was analyzed based on the annual energy consumption data of a specific data center. When the system was running at 100% of the year, It was shown that the installation of 1 MW of the proposed system can save 3,407 MWh of electrical energy per year. In addition, compared to the existing system, the annual power usage effectiveness can be improved from 2.0 to 1.57 and 6,293 MWh of extra heat energy per year can be produced to sell. Furthermore, sensitivity analysis was performed on the fuel cell operating temperature and current density to guide the appropriate installation capacity of the proposed system.

키워드

과제정보

본 연구는 한국에너지기술연구원의 주요 사업(C3-2425)을 재원으로 수행한 연구 과제의 결과입니다.

참고문헌

  1. H. Oh, Y. Y. Choi, and Y. J. Sohn, "A study on the fuel cell equivalent circuit modeling", Journal of Hydrogen and New Energy, Vol. 33, No. 3, 2022, pp. 226-231, doi: https://doi.org/10.7316/KHNES.2022.33.3.226.
  2. L. Belkhir and A. Elmeligi, "Assessing ICT global emissions footprint: trends to 2040 & recommendations", Journal of Cleaner Production, Vol. 177, 2018, pp. 448-463, doi: https://doi.org/10.1016/j.jclepro.2017.12.239.
  3. H. Rong, H. Zhang, S. Xiao, C. Li, and C. Hu, "Optimizing energy consumption for data centers", Renewable and Sustainable Energy Reviews, Vol. 58, 2016, pp. 674-691, doi: https://doi.org/10.1016/j.rser.2015.12.283.
  4. P. Sharma and B. Dash, "The digital carbon footprint: threat to an environmentally sustainable future", International Journal of Computer Science & Information Technology, Vol. 14, No. 3, 2022, pp. 19-29, doi: https://doi.org/10.5121/ijcsit.2022.14302.
  5. J. Cho, J. Yang, C. Lee, and J. Lee, "Development of an energy evaluation and design tool for dedicated cooling systems of data centers: sensing data center cooling energy efficiency", Energy and Buildings, Vol. 96, 2015, pp. 357-372, doi: https://doi.org/10.1016/j.enbuild.2015.03.040.
  6. H. Zhang, S. Shao, H. Xu, H. Zou, and C. Tian, "Free cooling of data centers: a review", Renewable and Sustainable Energy Reviews, Vol. 35, 2014, pp. 171-182, doi: https://doi.org/10.1016/j.rser.2014.04.017.
  7. J. Wang, Q. Zhang, S. Yoon, and Y. Yu, "Reliability and avail ability analysis of a hybrid cooling system with water-side economizer in data center", Building and Environment, Vol. 148, 2019, pp. 405-416, doi: https://doi.org/10.1016/j.buildenv.2018.11.021.
  8. M. Deymi-Dashtebayaz, S. V. Namanlo, and A. Arabkoohsar, "Simultaneous use of airside and water-side economizers with the air source heat pump in a data center for cooling and heating production", Applied Thermal Engineering, Vol. 161, 2019, pp. 114133, doi: https://doi.org/10.1016/j.applthermaleng.2019.114133.
  9. J. I. Yoon, C. H. Son, J. H. Heo, and Y. M. Kim, "Analysis on the energy saving effect of free cooling system in data center", Journal of Power System Engineering, Vol. 18, No. 3, 2014, pp. 73-78, doi: https://doi.org/10.9726/kspse.2014.18.3.073.
  10. R. E. Rosli, A. B. Sulong, W. R. W. Daud, M. A. Zulkifley, T. Husaini, M. I. Rosli, E. H. Majlan, and M. A. Haque, "A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system", International Journal of Hydrogen Energy, Vol. 42, No. 14, 2017, pp. 92939314, doi: https://doi.org/10.1016/j.ijhydene.2016.06.211.
  11. S. Authayanun and V. Hacker, "Energy and exergy analyses of a standalone HTPEMFC based trigeneration system for residential applications", Energy Conversion and Management, Vol. 160, 2018, pp. 230-242, doi: https://doi.org/10. 1016/j.enconman.2018.01.022. https://doi.org/10.1016/j.enconman.2018.01.022
  12. J. H Kim, M. Kim, and J. Kim, "Flow field design and stack performance evaluation of the thin plate separator for high temperature polymer electrolyte membrane fuel cell", Journal of Hydrogen and New Energy, Vol. 29, No. 5, 2018, pp. 442-449, doi: https://doi.org/10.7316/KHNES.2018.29.5.442.
  13. S. Ham, D. Park, W. Y. Lee and M. Kim, "Simulation to analyze operation strategy of combined cooling and power system using a high-temperature polymer electrolyte fuel cell for data centers", International Journal of Hydrogen Energy, Vol. 48, No. 22, 2023, pp. 8247-8259, doi: https://doi.org/10.1016/j.ijhydene.2022.11.257.
  14. Silicon Valley Leadership Group, "Data center energy forecast: final report", Accenture, 2008. Retrieved from http://dcxdc-ru.1gb.ru/files/27af78d0-f2fd-433b-8d1a-044ada89aa8a.pdf.
  15. G. L. Guizzi and M. Manno, "Fuel cell-based cogeneration system covering data centers' energy needs", Energy, Vol. 41, No. 1, 2012, pp. 56-64, doi: https://doi.org/10.1016/j.energy.2011.07.030.
  16. N. Horner and I. Azevedo, "Power usage effectiveness in data centers: overloaded and underachieving", The Electricity Journal, Vol. 29, No. 4, 2016, pp. 61-69, doi: https://doi.org/10.1016/j.tej.2016.04.011.
  17. Y. J. Kim, J. W. Ha, K. S. Park, K. H. Lee, and Y. H. Song, " Energy evaluation of data center with low cooling water temperature and free cooling", Journal of Korean Institute of Architectural Sustainable Environment and Building Systems, Vol. 14, No. 5, 2020, pp. 427-438, doi: https://doi.org/10.22696/jkiaebs.20200036.